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 Graphical Models
 Michael I. Jordan

 Abstract. Statistical applications in fields such as bioinformatics, informa-
 tion retrieval, speech processing, image processing and communications of-
 ten involve large-scale models in which thousands or millions of random
 variables are linked in complex ways. Graphical models provide a gen-
 eral methodology for approaching these problems, and indeed many of the
 models developed by researchers in these applied fields are instances of the
 general graphical model formalism. We review some of the basic ideas under-
 lying graphical models, including the algorithmic ideas that allow graphical
 models to be deployed in large-scale data analysis problems. We also present
 examples of graphical models in bioinformatics, error-control coding and
 language processing.

 Key words and phrases: Probabilistic graphical models, junction tree
 algorithm, sum-product algorithm, Markov chain Monte Carlo, variational
 inference, bioinformatics, error-control coding.

 1. INTRODUCTION

 The fields of statistics and computer science have
 generally followed separate paths for the past several
 decades, each field providing useful services to the
 other, but with the core concerns of the two fields rarely

 appearing to intersect. In recent years, however, it has
 become increasingly evident that the long-term goals
 of the two fields are closely aligned. Statisticians are
 increasingly concerned with the computational aspects,
 both theoretical and practical, of models and infer-
 ence procedures. Computer scientists are increasingly
 concerned with systems that interact with the external
 world and interpret uncertain data in terms of under-
 lying probabilistic models. One area in which these
 trends are most evident is that of probabilistic graph-
 ical models.

 A graphical model is a family of probability distribu-

 tions defined in terms of a directed or undirected graph.
 The nodes in the graph are identified with random vari-

 ables, and joint probability distributions are defined by
 taking products over functions defined on connected
 subsets of nodes. By exploiting the graph-theoretic

 representation, the formalism provides general algo-
 rithms for computing marginal and conditional prob-
 abilities of interest. Moreover, the formalism provides
 control over the computational complexity associated
 with these operations.

 The graphical model formalism is agnostic to the
 distinction between frequentist and Bayesian statis-
 tics. However, by providing general machinery for
 manipulating joint probability distributions and, in par-
 ticular, by making hierarchical latent variable models
 easy to represent and manipulate, the formalism has
 proved to be particularly popular within the Bayesian
 paradigm. Viewing Bayesian statistics as the sys-
 tematic application of probability theory to statis-
 tics and viewing graphical models as a systematic
 application of graph-theoretic algorithms to probabil-
 ity theory, it should not be surprising that many authors
 have viewed graphical models as a general Bayesian
 "inference engine" (Cowell, Dawid, Lauritzen and
 Spiegelhalter, 1999).

 What is perhaps most distinctive about the graph-
 ical model approach is its naturalness in formulating
 probabilistic models of complex phenomena in applied
 fields, while maintaining control over the computa-
 tional cost associated with these models. Accordingly,
 in this article our principal focus is on the presentation
 of graphical models that have proved useful in applied
 domains and on ways in which the formalism encour-
 ages the exploration of extensions of classical methods.

 Michael I. Jordan is Professor Computer Science
 Division and Department of Statistics, University of
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 GRAPHICAL MODELS 141

 Before turning to these examples, however, we begin
 with an overview of basic concepts.

 2. REPRESENTATION

 The two most common forms of graphical model are
 directed graphical models and undirected graphical
 models, based on directed acylic graphs and undirected
 graphs, respectively.

 Let us begin with the directed case. Let g(, ()
 be a directed acyclic graph, where V are the nodes
 and & are the edges of the graph. Let {X,:v E V}I
 be a collection of random variables indexed by the
 nodes of the graph. To each node v E V, let wr, denote
 the subset of indices of its parents. We allow sets of
 indices to appear wherever a single index appears;
 thus X,, denotes the vector of random variables
 indexed by the parents of v. Given a collection of
 kernels {k(xvx,v):v e }VI that sum (in the discrete
 case) or integrate (in the continuous case) to 1 (with
 respect to x,), we define a joint probability distribution
 (a probability mass function or probability density as
 appropriate) as

 (1) p(xv) = F k(xxvlx,).
 vEV

 It is easy to verify that this joint probability distribution

 has {k(x,lx,,)} as its conditionals; thus, henceforth,
 we write k(x, Ix,,) = p(x, Ixx,).

 Note that we have made no distinction between data

 and parameters, and indeed it is natural to include
 parameters among the nodes in the graph.

 A plate is a useful device for capturing replication
 in graphical models, including the factorial and nested
 structures that occur in experimental designs. A simple

 example of a plate is shown in Figure 1, which can be
 viewed as a graphical model representation of the de
 Finetti exchangeability theorem.

 Directed graphical models are familiar as represen-
 tations of hierarchical Bayesian models. An example is
 given in Figure 2.

 The graph provides an appealing visual representa-
 tion of a joint probability distribution, but it also pro-
 vides a great deal more. First, whatever the functional
 forms of the kernels p(x, Ix,,), the factorization in (1)
 implies a set of conditional independence statements
 among the variables X,, and the entire set of condi-
 tional independence statements can be obtained from
 a polynomial time reachability algorithm based on the
 graph (Pearl, 1988). Second, as we discuss in the fol-
 lowing section, the graphical structure can be exploited
 by algorithms for probabilistic inference.

 Let us now consider the undirected case. Given an

 undirected graph g (V, 8), we again let {X, :v e VI} be
 a collection of random variables indexed by the nodes
 of the graph and let C denote a collection of cliques
 of the graph (i.e., fully connected subsets of nodes).
 Associated with each clique C e C, let /c (xc) denote
 a nonnegative potential function. We define the joint
 probability p(xv) by taking the product over these
 potential functions and normalizing,

 1

 (2) p(xv)- lc(xc),
 CECe

 where Z is a normalization factor obtained by inte-
 grating or summing the product with respect to xv.
 See Figure 3 for an example of an undirected graph-
 ical model.

 0

 Zl
 N

 (a)

 0

 Z1 Z2 Z3 ZN

 (b)

 FIG. 1. The diagram in (a) is shorthand for the graphical model in (b). This model asserts that the variables Zn are conditionally
 independent and identically distributed given 0, and can be viewed as a graphical model representation of the de Finetti theorem. Note
 that shading, here and elsewhere in the paper, denotes conditioning.
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 K

 Zi

 X

 zCi

 N~ Ui

 FIG. 2. An example of a hierarchical Bayesian model represented
 as a directed graphical model. This is the errors-in-covariates
 logistic regression model of Richardson, Leblond, Jaussent and
 Green (2002). The core of this model is a logistic regression of Yi
 on Xi. The covariate Xi is not observed (in general), but noisy
 measurements Ui of Xi are available, as are additional observed
 covariates Ci. The density model for Xi is taken to be a mixture
 model, where K is the number of components, W are the mixing
 proportions, Zi are the allocations and 0 parameterizes the mixture
 components.

 Undirected graphs are often used in problems in ar-
 eas such as spatial statistics, statistical natural language
 processing and communication networks-problems
 in which there is little causal structure to guide the con-
 struction of a directed graph. However, there is no need

 to restrict undirected models to such domains; in par-
 ticular, it is possible to include parameters among the
 nodes of an undirected graph to yield an alternative
 general tool for Bayesian modeling. It is also possi-
 ble to work with hybrids that include both directed and
 undirected edges (Lauritzen, 1996).
 In general, directed graphs and undirected graphs

 make different assertions of conditional independence.
 Thus, there are families of probability distributions that
 are captured by a directed graph and are not captured
 by any undirected graph, and vice versa (Pearl, 1988).
 The representations shown in (1) and (2) can be

 overly coarse for some purposes. In particular, in the
 undirected formalism the cliques C may be quite large,
 and it is often useful to consider potential functions
 that are themselves factorized in ways that need not
 be equated with conditional independencies. Thus, in
 general, we consider a set of "factors" { fi (xc) : i E J}
 for some index set J, where Ci is the subset of nodes
 associated with the ith factor. Note in particular that
 the same subset can be repeated multiple times (i.e.,
 we allow Ci = Cj for i 0 j). We define a joint
 probability by taking the product across these factors:

 1

 (3) p(xv) =- Z fi (xc)
 As shown in Figure 4, this definition is associated with
 a graphical representation-the factor graph
 (Kschischang, Frey and Loeliger, 2001). A factor graph
 is a bipartite graph in which the random variables are
 round nodes and the factors appear as square nodes.
 There is an edge between the factor node fi and the
 variable node X, if and only if v Ci .

 Factor graphs provide a more fine-grained represen-
 tation of the factors that make up a joint probability
 and are useful in defining inference algorithms that ex-
 ploit this structure (the topic of the following section).

 X4

 X2

 XX X6

 X3 X5

 FIG. 3. An example of an undirected graphical model. Proba-
 bility distributions associated with this graph can be factorized as

 p(xv) = I *(x 1, x2) * (xa , x3) (x2, x4) (x3, x5) * (x2, x5, x6).

 X1 X2 X3 X4 X5

 fa fb ffd

 FIG. 4. An example of a factor graph. Probability dis-
 tributions associated with this graph can be factorized as

 p(xv)-= 7 fa (xl, x3)fb(x3, x4)fc(x2, x4, x5)fd(xl, x3).
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 GRAPHICAL MODELS 143

 Note also that the factor fi (xci) can often be written
 as exp(Oi Xi (xci)) for a parameter Oi and a fixed func-
 tion Xi, in which case the representation in (3) is noth-
 ing but the canonical form of the exponential family.
 Thus factor graphs are widely used as graph-theoretic
 representations of exponential family distributions.

 3. ALGORITHMS FOR PROBABILISTIC

 INFERENCE

 The general problem of probabilistic inference is

 that of computing conditional probabilities p(xF IxE),
 where V = E U F U H for given subsets E, F and H.
 In this section we are concerned with algorithms
 for performing such computations and the role that
 graphical structure can play in making such computa-
 tions efficient.

 In discussing inference algorithms, it proves useful
 to treat directed graphs and undirected graphs on an
 equal footing. This is done by converting the former
 to the latter. Note in particular that (1) could be
 treated as a special case of (2) if it were the case that

 each factor p(xi Ixj) were a function on a clique. In
 general, however, the parents ri of a given node i
 are not connected and so the set ri U {i} is not a
 clique. We can force this set to be a clique by adding
 (undirected) edges between all of the parents ri,
 essentially constructing a new graph that is a graphical
 cover of the original graph. If we also convert the
 directed edges (from parents to children) to undirected
 edges, the result is an undirected graphical cover-the
 so-called moral graph-in which all of the arguments
 of the function p(xi jx,1) are contained in a clique.
 That is, in the moral graph, the factorization in (1) is
 a special case of (2). Thus we can proceed by working
 exclusively within the undirected formalism.

 It is also useful to note that from a computational
 point of view the conditioning plays little essential
 role in the problem. Indeed, to condition on the event
 {XE = xE}, it suffices to redefine the original clique
 potentials. Thus, for i E , we multiply the poten-
 tial cc (xc) by the Kronecker delta function (xi) for

 any C such that {i }E C n E. The result is an unnormal-
 ized representation of the conditional probability that
 has the factorized form in (2). Thus, from a computa-
 tional point of view, it suffices to focus on the problem
 of marginalization of the general factorized expres-
 sion in (2). We are interested in controlling the growth
 in computational complexity of performing such mar-
 ginalization, as a function of the cardinality of V. In the
 following three sections, we describe the three princi-
 pal classes of methods that attempt to deal with this

 computational issue-exact algorithms, sampling al-
 gorithms and variational algorithms. Our presentation
 will be brief; for a fuller presentation, see Cowell et al.
 (1999) and Jordan (1999).

 3.1 Exact Algorithms

 We begin with an example. Consider the graphical
 model shown in Figure 3 and suppose that we wish
 to compute the marginal probability p(xl). We obtain
 this marginal by summing (assuming discrete random
 variables) over the remaining variables:

 1

 p(xl)z= Z* (Xl, X2)*(xl,x3) x2 x3 x4 x5 X6

 (4) C (x2, x4)4*(X3, x5)
 Sr2 (x2, X5, X6).

 Naively, each of these sums is applied to a summand
 that involves six variables, and thus the computa-
 tional complexity scales as r6 (assuming for simplic-
 ity that each variable has cardinality r). We can obtain
 a smaller complexity, however, by exploiting the dis-
 tributive law:

 1

 p(xl) : (x, 2) (Xl,X3) : (X2, X4) z x2 x3 x4

 L , *(x3, X5) E 4(X2, X5, X6)
 X5 x6

 Z : * (xl, x2)L Y (Xl, X3) c (X2, X4)
 x2 X3 x4

 . 4r(x3, x5)m6(x2, x5)
 X5

 YL *(xl, x2) 1*(Xl, x3)m5(x2, x3)
 x2 x3

 (5)

 S5 C (x2, X4)
 x4

 1

 = (xl, x2)m4(x2)
 X2

 L E *(Xl, x3)m5(x2, x3)
 x3

 1

 E= - (x1, x2)m4(x2)m3(xl, x2)
 x2

 1
 = -m2(x),

 z

 where we have defined intermediate factors mi in
 an obvious notation. We obtain the value of Z, and
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 144 M. I. JORDAN

 hence the marginal, by summing the final expression

 with respect to x 1,. Note that no more than three
 variables appear together in any summand, and thus the
 computational complexity is reduced to r3, a notable
 improvement.
 We can also perform this summation in a different
 order. In general we would like to choose an order-an
 elimination order-so that the worst-case summation

 is as small as possible (in terms of the number of
 arguments in the summand).

 This problem can be reduced to a graph-theoretic
 problem. Note in particular that each summation cre-
 ates an intermediate factor that is a function of all of

 the variables in the summand other than the variable

 being summed over. This functional dependence can be
 captured graphically. In particular, we define a triangu-

 lation algorithm by sequentially (1) choosing the next
 node in the elimination order, (2) linking all remaining
 nodes that are neighbors of the node and (3) removing
 the node from the graph. This defines a sequence of
 graphs. The largest clique that arises in this sequence
 characterizes the complexity of the worst-case sum-
 mation (the complexity is exponential in the size of
 this clique).

 The minimum (over elimination orders) of the size
 of the maximal clique is known as the treewidth of
 the graph. (By convention the treewidth is actually
 1 less than this maximal size.) To minimize the com-
 putational complexity of inference, we wish to choose
 an elimination ordering that achieves the treewidth.
 This is a graph-theoretic problem-it is independent
 of the numerical values of the potentials. (Moreover,
 it is also directly applicable to continuous variables.
 Replacing sums with integrals and taking care with
 regularity conditions, our characterization of compu-
 tational complexity in graphical terms still applies.
 There is of course the issue of computing individual
 integrals, which introduces additional computational
 considerations.)

 The problem of finding an elimination ordering
 that achieves the treewidth turns out to be NP hard

 (Arnborg, Corneil and Proskurowski, 1987). It is of-
 ten possible in practice, however, to find good or even
 optimal orderings for specific graphs, and a variety of
 inference algorithms in specific fields (e.g., the algo-
 rithms for inference on phylogenies and pedigrees in
 Section 4.1) have been based on specific choices of
 elimination orderings in problems of interest. In gen-
 eral this class of algorithms is known as probabilistic
 elimination and it forms an important class of exact in-
 ference algorithms.

 A limitation of the elimination approach to inference

 is that it yields only a single marginal probability.
 We often require more than one marginal probability
 and we wish to avoid the inefficiency of requiring
 multiple runs of an elimination algorithm.

 To see how to compute general marginal proba-
 bilities, let us first restrict ourselves to the special
 case in which the graph is a tree. In an undirected
 tree, the cliques are pairs of nodes and singleton
 nodes, and thus the probability distribution is para-

 meterized with potentials {fr(xi, xj) : (i, j) e 8} and
 {I (xi) : i e V}. To compute a specific marginal p(xf),
 consider a rooted tree in which node f is taken to be
 the root of the tree and choose an elimination order
 in which all children of any node are eliminated be-
 fore the node itself is eliminated. Given this choice, the

 steps of the elimination algorithm can be written in the
 following general way [see Figure 5(a)]:

 mji (xi)
 (6)

 (6) = (HXj)(Xi'X j ) mkj((Xj))
 xj ke~N(j)\i

 where NN(j) is the set of neighbors of node j and
 where mji (xi) is the intermediate term that is cre-
 ated when node j is eliminated (note that we have
 added the subscript i to the notation for intermediate
 terms; the reason becomes clear shortly). The desired
 marginal is obtained as

 (7) p(xf) ox f(xf) mef(xf),
 e&E,(f)

 where the proportionality constant is obtained by
 summing the right-hand side with respect to xf.

 If we now consider the problem of computing the
 marginals p(xi) for all of the nodes in the graph,
 it turns out that we already have the solution at
 hand. Dropping the notion of "elimination order,"
 we define an asynchronous algorithm in which any
 "message" mji(xi) is computed via (6) whenever
 the messages mkj(xj) on the right-hand side of the
 equation have already been computed; see Figure 5(b)
 for an example on a tree with four nodes. It can be
 shown that this algorithm computes all of the 21&G
 possible messages associated with the tree in a number
 of operations proportional to the diameter of the graph.

 [That is, for any (i, j) e 8, both mij(xj) and mji(xi)
 are computed, and all such messages are computed in
 time proportional to the length of the longest path in
 the graph.] Once all messages have been computed,
 we compute the marginal for any node via (7).
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 SX2

 mj(xj) mj(xj) 32 (X2) 42 (X2)
 m23 (x3) m24 (X4)

 k 1 X3 X4

 (a) (b)

 FIG. 5. (a) The intermediate terms that are created by the elimination algorithm when nodes k, I and j are eliminated in a fragment of an
 undirected tree. (b) The set of all messages that are created by the sum-product algorithm in a tree with four nodes.

 This algorithm is known as the sum-product algo-
 rithm. It is essentially a dynamic-programming-like al-
 gorithm that achieves the effect of multiple elimination
 orders by computing the intermediate terms that are
 needed for any given marginal only once, reusing these
 intermediate terms for other marginals. In the case of
 discrete nodes with cardinality r, the algorithm has a
 computational complexity of O(1 & | r2).
 The sum-product algorithm can be generalized in a
 number of ways. First, a variant of the algorithm can
 be defined on factor graphs. In this case two kinds of
 messages are defined, in accordance with the bipartite
 structure of factor graphs. Second, the algebraic op-
 erations that underlie the sum-product algorithm are
 justified by the fact that sums and products form a
 commutative semiring, and the algorithm generalizes
 immediately to any other commutative semiring (Aji
 and McEliece, 2000; Shenoy and Shafer, 1988). In par-
 ticular, "maximization" and "product" form a commu-
 tative semiring, and a "max-product" variant of the
 sum-product algorithm can be used to compute modes
 of posterior distributions. Finally, as we now describe,
 a generalization of the sum-product algorithm known
 as the junction tree algorithm can be used to compute
 marginals in general graphs.
 The junction tree algorithm can be viewed as com-
 bining the ideas of the elimination algorithm and the
 sum-product algorithm. The basic idea is to work with
 a treelike data structure in which the nodes are cliques
 rather than single nodes. (Such a graph is known as a

 hypergraph.) A variant of the sum-product algorithm
 is defined that defines messages that pass between
 cliques rather than single nodes, and this algorithm
 is run on a tree of cliques. Which cliques do we use
 to form this tree? It turns out that it is not possi-
 ble (in general) to use the cliques from the original
 graph, but rather we must use the cliques from an
 augmented graph obtained by triangulating the orig-
 inal graph. Conceptually we go through the opera-
 tions associated with the elimination algorithm, using a
 specific elimination ordering. Rather than actually per-
 forming these operations, however, we perform only
 the graph-theoretic triangulation process. This defines
 a set of cliques which are formed into a tree. The sum-
 product algorithm running on this tree yields not only a
 single marginal, but all marginals, where by "marginal"
 we now mean the marginal probability of all variables
 in each clique. The computational complexity of the al-
 gorithm is determined by the size of the largest clique,
 which is lower bounded by the treewidth of the graph.

 In summary, exact inference algorithms such as the
 elimination algorithm, the sum-product algorithm and
 the junction tree algorithm compute marginal prob-
 abilities by systematically exploiting the graphical
 structure, in essence exploiting the conditional inde-
 pendencies encoded in the pattern of edges in the
 graph. In the best case, the treewidth of the graph
 is small, and an elimination order that achieves the
 treewidth can be found easily. Many classical graphi-
 cal models, including hidden Markov models, trees and
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 146 M. I. JORDAN

 the state-space models associated with Kalman filter-
 ing, are of this kind. In general, however, the treewidth

 can be overly large and in such cases exact algorithms
 are not viable.

 To see how to proceed in the case of more complex
 models, note that large treewidth heuristically implies
 that the intermediate terms that are computed by the ex-

 act algorithms are sums of many terms. This provides
 hope that there might be concentration phenomena that

 can be exploited by approximate inference methods.
 These concentrations (if they exist) are necessarily de-
 pendent on the specific numerical values of the poten-
 tials. In the next two sections, we overview some of the

 algorithms that aim to exploit both the numerical and
 the graph-theoretic properties of graphical models.

 3.2 Sampling Algorithms

 Sampling algorithms such as importance sampling
 and Markov chain Monte Carlo (MCMC) provide
 a general methodology for probabilistic inference (Liu,

 2001; Robert and Casella, 2004). The graphical model
 setting provides an opportunity for graph-theoretic
 structure to be exploited in the design, analysis and
 implementation of sampling algorithms.

 Note in particular that the class of MCMC algorithms
 known as Gibbs sampling requires the computation
 of the probability of individual variables conditioned

 on all of the remaining variables. The Markov prop-
 erties of graphical models are useful here; condition-

 ing on the so-called Markov blanket of a given node
 renders the node independent of all other variables.
 In directed graphical models, the Markov blanket is

 the set of parents, children and co-parents of a given
 node (co-parents are nodes which have a child in com-
 mon with the node). In the undirected case, the Markov

 blanket is simply the set of neighbors of a given node.
 Using these definitions, Gibbs samplers can be set
 up automatically from the graphical model specifica-
 tion, a fact that is exploited in the BUGS software for
 Gibbs sampling in graphical models (Gilks, Thomas
 and Spiegelhalter, 1994). The Markov blanket is also
 useful in the design of Metropolis-based algorithms-
 factors that do not appear in the Markov blanket of a set

 of variables being considered in a proposed update can
 be neglected.

 Finally, a variety of hybrid algorithms can be de-
 fined in which exact inference algorithms are used lo-
 cally within an overall sampling framework (Jensen,
 Kjaerulff and Kong, 1995; Murphy, 2002).

 3.3 Variational Algorithms

 The basic idea of variational inference is to char-

 acterize a probability distribution as the solution to
 an optimization problem, to perturb this optimization
 problem and to solve the perturbed problem. While
 these methods are applicable in principle to general
 probabilistic inference, thus far their main domain of
 application has been to graphical models.

 In their earliest application to general statistical in-
 ference, variational methods were formulated in terms
 of the minimization of a Kullback-Leibler (KL) diver-

 gence, and the space over which the optimization was
 performed was a set of "simplified" probability distri-
 butions, generally obtained by removing edges from
 a graphical model (see Titterington, 2004, this vol-
 ume). A more general perspective has emerged, how-
 ever, which relaxes the constraint that the optimization

 is performed over a set of probability distributions and
 no longer focuses on the KL divergence as the sole
 optimization functional of interest. This approach can
 yield significantly tighter approximations. We briefly
 overview the key ideas here; for a detailed presenta-
 tion, see Wainwright and Jordan (2003).

 We focus on finitely parameterized probability distri-

 butions, which we express in exponential family form.

 In particular, if we assume that each of the factors
 in (1), (2) or (3) can be expressed in exponential family
 form relative to a common measure v, then the product

 of such factors is also in exponential family form and
 we write

 (8) p(xv l) = exp{ (0, O (x)) - A(0)},

 where q5 (xv) is the vector of sufficient statistics (a vec-

 tor whose components are functions on the cliques of
 the graph) and where the cumulant generating func-
 tion A(0) is defined by the integral

 (9) A(0) = logf exp(0, 0(xv))v(dxy),

 where (., -) denotes an inner product.
 We now use two important facts: (1) the cumulant

 generating function A(0) is a convex function on a con-
 vex domain 0 (Brown, 1986); (2) any convex function
 can be expressed variationally in terms of its conjugate
 dual function (Rockafellar, 1970). This allows us to ex-
 press the cumulant generating function as

 (10) A(9) = sup {(0, t) - A*())1},
 tLEc:N
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 where M is the set of realizable mean parameters,

 S e Rd p(x) s.t.1

 f 0 (xv) p (xv)v (dxv) = it
 and where A* (t) is the conjugate dual function,

 (12) A*(A,)= sup{(t, 0) - A(0)}. OEO

 [Note the duality between (10) and (12).] In (10)
 we have expressed the cumulant generating function
 variationally-as the solution to an optimization prob-
 lem. Moreover, the optimizing arguments gt are pre-
 cisely the expectations for which we wish to solve;
 for example, in the discrete case they are the mar-
 ginal probabilities that were our focus in Section 3.1.
 Equation (10) is a general expression of the inference
 problem that any algorithm (such as the junction tree
 algorithm) aims to solve.

 Approximate inference algorithms can now be ob-
 tained by perturbing the optimization problem in (10)
 in various ways. One approach is to restrict the op-
 timization to a class of simplified or "tractable" dis-
 tributions-this is known as the mean field approach
 (Jordan, Ghahramani, Jaakkola and Saul, 1999). Thus

 we consider a subset Ytract _ CM that corresponds to distributions that are tractable vis-ai-vis an algorithm
 such as the junction tree algorithm, and we restrict the

 optimization to this set:

 (13) sup {(A, 8) - A*(At)}.
 A E M tract

 The optimizing values of At are the mean field approxi-
 mations to the expected sufficient statistics. Moreover,
 because we have restricted the optimization to an inner
 approximation to the set M, we obtain a lower bound
 on the cumulant generating function.

 Another class of variational inference algorithms can
 be obtained by considering outer approximations to

 the set M. In particular, the parameters /, must sat-
 isfy a number of consistency relationships if they are
 to be expected sufficient statistics of some probabil-
 ity distribution. The Bethe approximation involves re-
 taining only those consistency relationships that arise
 from local neighborhood relationships in the graph-
 ical model, dropping all other constraints (Yedidia,
 Freeman and Weiss, 2001). For example, for a linked
 pair of nodes (s, t), the marginal Atst(xs, xt) must
 equal ts (xs) if we sum over xt, and the marginal

 Lsu (Xs, xu) must also equal its(xs) if we sum over xu

 for a link (s, u). Let us refer to the set containing such

 vectors /t as NMlocal, where N C elViocal. Carrying out
 the optimization over this set, we have the Bethe vari-
 ational problem:

 (14) sup {(At, 0) - A*ethe(/t)}. MA E -Ulocal

 Note that A* has been replaced by Aethe in this
 expression. Indeed, by assumption it is infeasible to
 compute the conjugate function A* on M. Moreover,
 it can be shown that A* is infinite outside of AM, so an

 approximation to A* is needed. The quantity ABethe is
 known as the Bethe entropy and it is a sum of entropy
 terms associated with the edges of the graph, a natural

 counterpart to Mlocal-
 We can attempt to solve (14) by adding Lagrange

 multipliers to reflect the constraints that define Mlocal
 and then differentiating to obtain a set of fixed point

 equations. Surprisingly, these equations end up be-
 ing equivalent to the sum-product algorithm for trees
 in (6). The messages mij (x j) are simply exponentiated
 Lagrange multipliers. Thus the Bethe approximation
 is equivalent to applying the local message-passing
 scheme developed for trees to graphs that have loops
 (Yedidia, Freeman and Weiss, 2001). The algorithm
 has been surprisingly successful in practice and, in par-
 ticular, has been the algorithm of choice in the applica-
 tions to error-control codes discussed in Section 5.

 The area of variational inference has been quite
 active in recent years. Algorithms known as cluster
 variation methods have been proposed that extend the

 Bethe approximation to high-order clusters of variables
 (Yedidia, Freeman and Weiss, 2001). Other papers
 on higher-order variational methods include Leisink
 and Kappen (2002) and Minka (2002). Wainwright
 and Jordan (2004) presented algorithms based on
 semidefinite relaxations of the variational problem.
 Theoretical analysis of variational inference is still in
 its infancy; see Tatikonda and Jordan (2002) for initial
 steps toward an analysis of convergence.

 Given that variational inference methods involve

 treating inference problems as optimization problems,
 empirical Bayes procedures are particularly easy to for-
 mulate within the variational framework, and many of

 the applications of variational methods to date have
 been empirical Bayesian. The framework does not re-
 quire one to stop short of full Bayesian inference, how-
 ever. See, for example, Attias (2000) and Ghahramani
 and Beal (2001) for recent papers devoted to full
 Bayesian applications of variational inference.
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 4. BIOINFORMATICS

 The field of bioinformatics is a fertile ground for
 the application of graphical models. Many of the
 classical probabilistic models in the field can be viewed
 as instances of graphical models, and variations on
 these models are readily handled within the formalism.
 Moreover, graphical models naturally accommodate
 the need to fuse multiple sources of information,
 a characteristic feature of modem bioinformatics.

 4.1 Phylogenetic Trees

 Phylogenetic trees can be viewed as graphical mod-
 els. Let us briefly outline the key ideas and then con-
 sider some extensions. We assume that we are given
 a set of homologous biological sequences, one from
 each member of a set of species, where "homologous"
 means that the sequences are assumed to derive from
 a common ancestor. We focus on DNA or protein se-
 quences in which the individual elements in the se-
 quences are referred to as sites, but phylogenetic trees
 are also often based on sequences of other characters
 such as morphological traits.

 Essentially all current methods for inferring phylo-
 genetic trees assume that the sites are independent,
 so let us begin by making that assumption. We repre-
 sent a phylogeny as a binary tree in which the leaves
 of the tree are the observed values of a given site in
 the different species and the nonterminals are the val-
 ues of the site for putative ancestral species (see Fig-
 ure 6). Thus, in the case of DNA, all of the nodes in the
 tree are multinomial random variables with four states,

 and in the case of proteins, all nodes are multinomial
 with 20 states. Treating the tree as a directed graphi-
 cal model, we parameterize the tree by following the
 recipe in (1) and annotating each edge with the con-
 ditional probability of a state given its ancestral state.
 (In fact, the likelihood of a phylogenetic tree is gen-
 erally independent of the choice of root; the undi-
 rected formalism is often more appropriate.) These
 conditional probabilities are generally parameterized
 in terms of an "evolutionary distance" parameter that
 is to be estimated and their parametric form is an expo-

 nential decay to an equilibrium distribution across the
 four nucleotides or 20 amino acids (Felsenstein, 1981).

 Taking the product of the local parameterizations,
 we obtain the joint probability of the states of a given
 site, and taking a further product over sites (the plate
 in Figure 6), we obtain the joint probability across all
 sites. The likelihood is easily computed via the elim-
 ination algorithm-indeed the "pruning" algorithm of

 M

 FIG. 6. A simple example of a phylogeny on four extant organ-
 isms and M sites. The tree encodes the assumption that there is
 a first speciation event and then two further speciation events that
 lead to the four extant organisms. The plate represents the assump-
 tion that the M sites evolve independently. Note that classical phy-
 logenies are generally drawn with varying edge lengths to denote
 the evolutionary distance, but in the graphical model formalism,
 this distance is simply a parameter in the conditional distribu-

 tion p(xv IxTv), and is left implicit in thefigure.

 Felsenstein (1981) was an early instance of a graphical
 model elimination algorithm. The conditional proba-
 bilities of ancestral states can be computed by the sum-
 product algorithm. Finally, while classical methods
 for fitting phylogenetic trees rely on the expectation-
 maximization algorithm for parameter estimation (in
 which the expectation step is computed via the sum-
 product algorithm) and search across tree topologies to
 find the maximum likelihood tree, it is also possible
 to use MCMC methods within a Bayesian framework
 (Huelsenbeck and Bollback, 2001).

 The assumptions that lead to the classical phyloge-
 netic tree model are wanting in several respects. First,
 the assumption of site independence is generally in-
 correct. There are biochemical interactions that affect

 mutation probabilities at neighboring sites and there
 are global constraints that alter mutation rates in con-
 served regions of DNA and proteins. Second, genes do
 not necessarily evolve according to tree topologies; for
 example, in bacteria there are several mechanisms for
 lateral gene transfer between species.

 The graphical model formalism provides a natural
 upgrade path for considering more realistic phyloge-
 netic models that capture these phenomena. Lateral
 gene transfer is readily accommodated by simply re-
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 moving the restriction to a tree topology. Lack of in-
 dependence between sites is captured by replacing the
 plate in Figure 6 with an explicit array of graphs, one
 for each site, with horizontal edges capturing interac-
 tions. For example, we could consider Markovian mod-
 els in which there are edges between ancestral nodes
 in neighboring sites. In general, such models create
 loops in the underlying graph and approximate infer-
 ence methods generally are required.

 4.2 Pedigrees and Multilocus Linkage Analysis

 While phylogenies attempt to model relationships
 among the instances of a single gene as found in
 different species in evolutionary time, pedigrees are
 aimed at a finer level of granularity. A pedigree
 displays the parent-child relationships within a group
 of organisms in a single species and attempts to
 account for the presence of variants of a gene as they
 flow through the population. A multilocus pedigree is
 a pedigree which accounts for the flow of multiple
 genes. Multilocus pedigrees turn out to be a special
 case of a graphical model known as a factorial hidden
 Markov model.

 Let us briefly review the relevant genetic terminol-
 ogy. Arrayed along each chromosome is a set of loci,
 which correspond to genes or other markers. Chromo-
 somes occur in pairs and thus there is a pair of genes
 at each locus. [This is true for humans (for all but the
 X and Y chromosomes), but not for all organisms. The
 models that we discuss can easily be specialized to
 organisms in which chromosomes are not paired and,
 in particular, can accommodate the X and Y chromo-
 somes in humans.] Each gene occurs in one of sev-
 eral variant forms-alleles-in the population. Thus

 at each locus there is a pair of alleles. The full set of
 all such pairs for a given individual is referred to as
 the genotype of that individual. Given the genotype,
 there is a (generally stochastic) mapping to the phe-
 notype-a set of observable traits. The simplifying as-
 sumption often made is that each trait is determined
 by a single pair of alleles, but as we see, our model-
 ing formalism does not require this (generally inaccu-
 rate) assumption.

 In the process of meiosis, one of the alleles in the
 pair at each locus is selected and transmitted to the
 offspring. The offspring receives one allele at each
 locus from his or her father and the other allele at that

 locus from his or her mother.

 Define multinomial genotype variables Gi for the
 paternal allele at the nth locus in the ith organism and
 define G n) for the maternal allele at that locus. Also nm

 let Pi(n) denote the corresponding phenotype variables.
 Finally, let Hif) denote a binary "haplotype variable."
 This variable is equal to 1 if organism i receives the fa-
 ther's paternal allele (i.e., the grandfather's allele) and
 is equal to 0 if organism i receives the father's mater-
 nal allele (i.e., the grandmother's allele). Similarly, let

 Hin) denote the corresponding binary haplotype vari- im

 able on the mother's side.

 The relationships between these variables are sum-
 marized in the graphical model in Figure 7. Letting
 the haplotype variables take on their two values with
 probability 0.5, the probability of an offspring's geno-
 type given the parental genotypes is simply given by
 Mendel's first law.

 The graph in Figure 7 is a simple example of a pedi-
 gree. In general, pedigrees involve many organisms.

 (1n) (h) (n) (n) (n) (n)
 G?(i )f P(i) GJ?(i )m Gu(i)f P (i) G (i) m

 (n) (n)

 im if

 (n)

 G (11)G (17
 if iln

 FIG. 7. Pedigree on three organisms-a child i, the father nr(i) and the mother iL(i). The variables G(n), H(n) and p(n) encode the values
 of the genotype, haplotype and phenotype, respectively, at locus n, for each of the three organisms.
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 The graphical topology is a tree only in the simplest
 cases. In general, there are large numbers of loops in
 pedigrees of sufficient size.
 Let us now consider the relationship between the
 haplotype variables at different loci. The key biologi-
 cal fact is that pairs of chromosomes cross over during
 meiosis, so that alleles that were on different chro-
 mosomes in the parent may be on the same chro-
 mosome in the child. Crossover can be modeled by
 treating the haplotype variables as a Markov chain.

 Thus, Hi n) and Hi+1) are equal if no crossover oc-
 curs between locus n and locus n + 1, and are unequal
 otherwise. The probability of crossover is a parameter
 of the model. Estimating these parameters from data
 yields an estimate of genetic distance between loci and
 yields genetic maps of the chromosomes.
 Connecting the haplotype variables according to
 the Markovian assumption yields the graphical model
 shown in Figure 8. In this graph the horizontal chains
 correspond to the chromosomes in the father and
 mother of a single organism. More generally, for pedi-
 grees that involve multiple organisms, there is a pair
 of horizontal chains per organism. These chains are
 uncoupled, reflecting the obvious fact that meiosis is
 independent among different organisms. The coupling
 among organisms is restricted to couplings among
 the G n) variables (these couplings are contained in the

 (n) H(n+1)
 if if

 (n) (n+l) Him Him

 G(n).G(n+l)
 p(n) P(n+l)

 FIG. 8. Representation of a multilocus pedigree for one organism
 and two loci. The figure is obtained from the pedigree diagram in
 Figure 7 by grouping all of the genotype variables at locus n into a
 single oval denoted G(n), grouping all of the phenotype variables
 into a single oval denoted p(n) and connecting the haplotype
 variables horizontally between loci.

 ovals in Figure 8; they have been suppressed to sim-
 plify the diagram).
 The model in Figure 8 is an instance of a graphi-

 cal model family known as a factorial hidden Markov
 model (fHMM) (Ghahramani and Jordan, 1997); see
 Figure 10(c) for a generic example. Classical algo-
 rithms for inference on multilocus pedigrees are vari-
 ants of the elimination algorithm on this fHMM and
 correspond to different choices of elimination order
 (Lander and Green, 1987; Elston and Stewart, 1971).
 While these algorithms are viable for small problems,
 exact inference is intractable for general multilocus
 pedigrees. Indeed, focusing only on the haplotype vari-
 ables, it can be verified that the treewidth is bounded
 below by the number of organisms and thus the compu-
 tational complexity is exponential in the number of or-
 ganisms. More recently, Gibbs sampling methods have
 been studied; in particular, Thomas, Gutin, Abkevich
 and Bansal (2000) proposed a blocking Gibbs sam-
 pler that takes advantage of the graphical structure
 in Figure 8. Ghahramani and Jordan (1997) presented
 a suite of variational and Gibbs sampling algorithms
 for fHMMs, and further developments were presented
 by Murphy (2002).

 5. ERROR-CONTROL CODES

 Graphical models play an important role in the
 modern theory of error-control coding. Ties between
 graphs and codes were explored in the early 1960s
 by Gallager (1963), but this seminal line of research
 was largely forgotten, due at least in part to a lack
 of sufficiently powerful computational tools. A flurry
 of recent work, however, has built on Gallager's work
 and shown that surprisingly effective codes can be
 built from graphical models. Codes based on graphical
 models are now the most effective codes known for

 many channels, achieving rates near the Shannon
 capacity.

 The basic problem of error-control coding is that of
 transmitting a message (a sequence of bits) through
 a noisy channel in such a way that a receiver can
 recover the original message despite the noise. In
 general, this is achieved by transmitting additional (re-
 dundant) bits in conjunction with the original message
 sequence. The receiver uses the redundancy to detect,
 and possibly correct, any corruption of the message
 due to the noise. The key problems are that of deciding
 the overall mapping between messages and the redun-
 dant bits (the problem of code design), that of com-
 puting the redundant bits for any given message (the
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 encoding problem) and that of estimating the original
 message based on a transmitted message (the decod-
 ing problem).

 There are three ways in which probability enters
 into the problem. First, the set of possible messages
 (the source) is given a prior distribution. We treat
 this distribution as uniform, assuming in essence that
 a source code has been developed that extracts the
 statistical redundancy from the source (this redundancy

 is distinct from the redundancy that we wish to impose
 on the message, a redundancy which is designed to be
 appropriate for a given channel). Second, the channel
 is noisy. A simple example of a channel model is
 a binary symmetric channel, in which each message
 bit is transmitted correctly (with probability a) or
 flipped (with probability 1 - a). These transmission
 events are often assumed independent and identically
 distributed across the bits in a message sequence; that
 is, the channel is often assumed to be memoryless.
 We make that assumption here for simplicity, but note
 that the graphical model formalism can readily cope
 with nonmemoryless channels.

 Finally, the code itself is often taken to be random.
 In the graphical model setting, in which an instance
 of a code is identified with a graph, this means that
 we are considering random ensembles of graphs. This
 assumption is not an inherent feature of the problem;
 rather it is imposed to allow probabilistic tools to be
 applied to theoretical analysis of the properties of a
 code (see below).

 In Figure 9, we show a specific example of a
 graph from an ensemble known as a low-density parity
 check (LDPC) code. The variable nodes in the graph
 are binary-valued and represent the message bits;
 a message is a specific instance of the 2N possible
 states of these nodes. The factor nodes above the

 message nodes represent the channel. Thus, for the
 message variable Xi, the factor node fi represents
 the likelihood p(yi Ixi), where yi is the observed value
 of the transmitted message. The factor nodes below
 the message nodes are parity-check nodes; these are
 equal to 1 if and only if an even number of the nodes
 that they are connected to are equal to 1. The prior
 probability distribution on messages is obtained as an
 instance of (3) based on the parity check factors. This
 distribution assigns zero probability to any message
 that violates one of the parity checks and assigns
 uniform probability to any message that satisfies all
 of the parity checks. (If there are K factor nodes
 and each node imposes an independent constraint on
 the message sequences, then there are 2N-K possible

 f f2 3 f4

 X, X2 X3 X4

 fa fb fc

 FIG. 9. Factor graph representation of an LDPC code. The code
 has N = 4 message bits and K = 3 parity checks. The factor nodes
 below the message bits represent the parity checks, while the factor
 nodes above the message bits represent the channel.

 message sequences. The ratio (N - K)/N is known as
 the rate of the code.)
 If we now impose an upper bound on the degree of

 the message nodes (i.e., the number of parity check
 nodes to which a message node is connected) and
 an upper bound on the degree of the parity check
 nodes (the number of message nodes to which a parity
 check node is connected), we obtain the family of
 graphs referred to as a low-density parity check code.
 (Actually, in both practice and theory, LDPC codes
 incorporate an additional level of randomness; the
 degrees of the nodes are selected from a distribution.)
 The graphical model in Figure 9 provides a represen-

 tation of both the uniform prior on messages and the
 likelihood of transmitted bits given original message
 bits. We thus have a well-formed inference problem--
 the goal is that of computing the posterior probability
 distribution of the original message bits given the trans-
 mitted bits. The mean or mode of this distribution can

 be used as an estimate of the original message.
 While in principle any of the inference algorithms

 associated with general graphical models could be used
 for LDPC codes, the presence of loops in the graph and
 the large scale of graphs that are used (in which N may
 be as large as many tens of thousands) rule out exact in-
 ference. Moreover, MCMC algorithms do not appear to
 be viable in this domain. The algorithm that is used in
 practice is the sum-product algorithm. The algorithm
 is quite successful in practice for large block lengths
 (large values of N). Moreover, theoretical convergence
 results are available for the sum-product algorithm
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 in this setting (Richardson, Shokrollahi and Urbanke,
 2001). Averaging over the ensemble of graphs, it can
 be shown that the average error probability goes to zero

 over the iterations of the sum-product algorithm, given
 conditions on the channel, the degree distributions, the
 block length and the code rate. Also, a martingale ar-
 gument can be invoked to show that almost all codes
 behave like the average code, which justifies the ran-
 dom selection of a specific code from the ensemble for
 use in practice.
 Graphical models continue to play a central role in
 the development of error-control codes. New codes are
 designed by proposing alternative graphical structures,
 and the analysis of decoding performance makes direct
 use of the graphical structure. The graphical framework

 allows the exploration of more complex channel mod-
 els (e.g., the factor nodes that represent the channel can

 connect to multiple message nodes in Figure 9 in the
 case of channels with memory).

 6. SPEECH, LANGUAGE AND
 INFORMATION RETRIEVAL

 The fields of speech recognition, natural language
 processing and information retrieval involve the study
 of complex phenomena that exhibit many kinds of
 structural relationships. Graphical models play an in-
 creasingly important role in attempts to model these
 phenomena and extract information that is needed in
 a given problem domain.

 6.1 Markov and Hidden Markov Models

 Markov models and hidden Markov models are

 graphical models that attempt to capture some of
 the simplest sequential structure inherent in speech
 and language. In both cases, the graphical model is
 a chain of multinomial "state" nodes Xt, with links
 between these nodes parameterized by a state transition
 matrix. In the case of a first-order Markov model,
 there is an edge between state Xt-1 and state Xt, for
 t E { 1,..., T}, while in higher-order Markov models

 there are edges from earlier states Xt-r. Hidden
 Markov models (HMMs) have an additional set of
 output nodes Yr, with edges between Xt and Yr.

 A simple yet important application of HMMs arises
 in the part-of-speech problem. In this problem, the
 data are word sequences and the goal is to tag the
 words according to their part of speech (noun, verb,

 preposition, etc.). Thus the states Xt take as many
 values as there are parts of speech (typically several
 dozen) and the outputs Y, take as many values as there

 are words in the vocabulary (typically many tens of
 thousands). Training data generally consist of tagged
 data-(Xt, Yt) pairs-and the subsequent inference
 problem is to infer a sequence of Xt values given a
 sequence of Yt values.

 Speech recognition provides a wide-ranging set of
 examples of the application of HMMs. In this setting,

 the observables Yt are generally short-term acoustic
 spectra, either continuous-valued or discretized. A sin-
 gle HMM is often designed to cover a small phonetic
 unit of speech, such as a syllable or diphone, and the
 states Xt are generally treated as unobserved (latent)
 variables. A library of such HMMs is created based on
 a corpus of training data. The HMMs in this library
 are then assembled into a lattice, which is itself a large
 graphical model that has edges between each of the el-
 emental HMMs. The inference problem in this lattice
 of HMMs is generally to find the mode of the posterior
 distribution on state sequences, a computation which
 effectively segments a long observation sequence into
 its component speech units.

 The elemental HMMs in this lattice are often trained

 based on "segmented data," in which the portion of the
 speech sequence appropriate to each HMM is known
 in advance. It is also necessary to estimate the parame-
 ters associated with the transitions between the speech
 units, a problem known as language modeling. In this
 setting, Markov models are widely used. In particu-
 lar, it is generally necessary to provide an estimate of
 the probability of a given word based on the previous
 two words (a trigram model). Given the large number
 of words in the vocabulary, this involves a large num-
 ber of parameters relative to the amount of available
 data, and fully Bayesian methods (or ad hoc smooth-
 ing techniques) are generally necessary for parame-
 ter estimation.

 Finally, returning briefly to bioinformatics, it is
 worth noting that HMMs have a large number of
 applications, including the problems of gene-finding in
 DNA and domain modeling in proteins. See Durbin,
 Eddy, Krogh and Mitchison (1998) for a discussion of
 these applications.

 6.2 Variations on Markovian Models

 A large number of variations on Markovian models
 are currently being explored in the fields of speech and
 language processing, and also in bioinformatics. Many
 of these models are readily seen to be members of the
 larger family of graphical models.

 In speech recognition models, the state-to-output
 distribution p(yt Ixt) is commonly taken to be a mix-
 ture of Gaussians, reflecting the multimodality that
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 (a)  (b)

 (c)  (d)

 FIG. 10. Variations on the hidden Markov model theme. (a) A model in which the emissions are mixture models. (b) A coupled HMM.
 (c) A factorial HMM. (d) A model in which the transition distribution is a mixture model.

 is frequently observed in practice. As shown in Fig-
 ure 10(a), this can be represented as a graphical model
 in which additional (multinomial) variables are intro-
 duced to encode the allocations of the mixture compo-
 nents. The model remains eminently tractable for exact
 inference.

 A more serious departure is the coupled hidden
 Markov model shown in Figure 10(b) (Saul and Jordan,
 1995). This model involves two chains of state vari-
 ables which are coupled via links between the chains.
 [The model is a hybrid of the directed and undirected
 formalisms an instance of the family of chain graphs
 (Lauritzen, 1996).] Triangulating this graph yields
 cliques of size 3, and the model remains tractable for
 exact inference.

 More generally, the factorial hidden Markov model
 shown in Figure 10(c) is an instance of a model
 that involves multiple chains (Ghahramani and Jordan,
 1997). In this particular model the states are coupled
 only via their connection to a common set of output
 variables (but variations can also be considered in
 which there are links among the chains). The factorial
 HMM allows large state spaces to be represented with

 a small number of parameters. Note that triangulation
 of this model yields cliques of size M + 1, where
 M is the number of chains, and thus for even moderate
 values of M this model is intractable. Variational and

 MCMC methods have been employed successfully in
 this setting (Ghahramani and Jordan, 1997).

 Finally, in the mixed memory Markov model shown
 in Figure 10(d), the transition distribution is a mixture
 over pairwise transitions (Saul and Jordan, 1999). This
 model makes it possible to approximate high-order
 Markov models with a small number of parameters.

 Further examples of variations of Markovian mod-
 els include hierarchical HMMs (Murphy and Paskin,
 2002), variable length HMMs (Ron, Singer and Tishby,
 1996) and buried HMMs (Bilmes, 2004). For an
 overview of these models in the context of applications
 to speech and language problems, see Bilmes (2004).

 6.3 A Hierarchical Bayesian Model for
 Document Collections

 For large-scale collections of documents (such as
 the World Wide Web), it is generally computationally
 infeasible to attempt to model the sequential structure
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 M3

 a Zn W0

 FIG. 11. The latent Dirichlet allocation model for document col-
 lections. The outer plate represents a corpus that contains M docu-
 ments, while the inner plate represents an N-word document within

 that corpus.

 of individual documents, and the field of information
 retrieval is generally built on the "bag-of-words"
 assumption-the assumption that word order within
 a document can be neglected for the purposes of
 indexing and retrieving documents. This is simply
 an assumption of exchangeability and it leads (via
 the de Finetti theorem) to the consideration of latent
 variable models for documents.

 While neglecting sequential structure, it may be de-
 sirable to attempt to capture other kinds of statistical
 structure in document collections, in particular the no-
 tion that documents are characterized by topics. Blei,
 Jordan and Ng (2003) proposed a hierarchical latent
 variable model that has explicit representations for
 documents, topics and words. The model is shown in
 Figure 11. Words are represented by a multinomial
 variable W and topics are represented by a multino-
 mial variable Z. Generally the cardinality of Z is sig-
 nificantly smaller than that of W. As shown by the
 innermost plate, the M words in a document are gen-
 erated by repeatedly choosing a topic variable and then
 choosing a word corresponding to that topic. The prob-
 abilities of the topics are document-specific and they
 are assigned via the value of a Dirichlet random vari-
 able 0. As shown by the outermost plate, this variable
 is sampled once for each of the N documents in the
 corpus. As this example demonstrates, the graphical
 model formalism is useful in the design of a wide va-
 riety of mixed effects models and hierarchical latent
 variable models.

 7. DISCUSSION

 Let us close with a few remarks on the present state
 and future of graphical models in statistics. Until very
 recently, graphical models have been relegated to the

 periphery in statistics, viewed as useful in specialized
 situations but not a central theme. Several factors are

 responsible for their increasing prominence. First, hi-
 erarchical Bayesian models are naturally specified as
 directed graphical models, and the ongoing interest
 in the former has raised the visibility of the latter.
 Second, graph-theoretic concepts are key in recent at-
 tempts to provide theoretical guarantees for MCMC
 algorithms. Third, an increasing awareness of the im-
 portance of graph-theoretic representations of prob-
 ability distributions in fields such as statistical and
 quantum physics, bioinformatics, signal processing,
 econometrics and information theory has accompanied
 a general increase in interest in applications of statis-
 tics. Finally, the realization that seemingly specialized
 methods developed in these disciplines are instances of
 a general class of variational inference algorithms has
 led to an increasing awareness that there may be alter-
 natives to MCMC for general statistical inference that
 are worth exploring.

 While the links to graph theory and thence to
 computational issues are a major virtue of the graphical
 model formalism, there is much that is still lacking.
 In the setting of large-scale graphical models, it is
 desirable to have some general notion of the trade-
 off between computation and accuracy on which to
 base choices in model specification and the design of
 inference algorithms. Such a trade-off is, of course,
 missing not only in the graphical model formalism,
 but in statistics at large. Taking a decision-theoretic
 perspective, we should ask that our loss functions
 reflect computational complexity as well as statistical
 fidelity. By having a foot in both graph theory and
 probability theory, graphical models may provide hints
 as to how to proceed if we wish to aim at a further and
 significantly deeper linkage between statistical science
 and computational science.
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