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Reminder: supervised learning

In supervised learning, you want to learn the 
relationship between a set of input objects, 
described by their features, and their label.

Either a class (classification), 
or a value (regression)



  

Reminder: supervised learning

In supervised learning, you want to learn the 
relationship between a set of input objects, 
described by their features, and their label.

Either a class (classification), 
or a value (regression)

Many applications, from SPAM classifier, to 
fraud detection in bank transactions, or sales 
predictions for a company.



  

Supervised learning: a decision tree
A decision tree

mutation



  

Supervised learning: a decision tree

if node is not “pure”:
Select feature and threshold 
that separate in the best way 
the samples

Add node to the tree with the 
selected threshold.

Separate samples in the child 
nodes

else:
Set as leaf

A decision tree
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How to grow a decision tree

The impurity reduction will be our goal when growing 
the tree: we want to find the tree with the lowest 
impurity over its nodes.



  

How to grow a decision tree

The impurity reduction will be our goal when growing 
the tree: we want to find the tree with the lowest 
impurity over its nodes.

Two measures are usually used for classification:
● Entropy:

L(Node)=-|Node| (pc1log(pc1) + pc2log(pc2))

⇒Information Gain from a split
IG(A,B/Node) = L(Node) – L(A) – L(B)

● Gini Index:
L(Node)= |Node| (1 –  pΣ 2)



  

How to grow a decision tree

Stopping conditions
● Minimum number of samples per child node
● Maximum depth
● Maximum number of nodes
● Minimum reduction in impurity



  

“A single tree does not make a forest”

A single decision tree will correctly learn to predict from the 
dataset its given…
… But will most likely fail when given a new dataset
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Random forest 
classifier
The class of a variant 
is given by the average 
vote from all trees
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A single decision tree will correctly learn to predict from the 
dataset its given…
… But will most likely fail when given a new dataset

 ⇒ The solution is to grow multiple trees!
To avoid correlation between trees: boostrap and feature selection

“A single tree does not make a forest”



  

The bias-variance trade-of

The bias is error from erroneous assumptions in the learning 
algorithm. High bias can cause an algorithm to miss the relevant 
relations between features and target outputs (underfitting).

The variance is error from sensitivity to small fluctuations in the 
training set. High variance can cause overfitting: modeling the 
random noise in the training data, rather than the intended outputs.



  

Bias-variance and random forests



  

Boosting trees: working on the bias

Instead of working with a large tree (with 
high variance), Boosting relies on shallow 
trees, with low variance, but high bias.



  

Boosting trees: working on the bias

Gradient descent: finding the 
minimum of a function by iteratively 
updating the coordinates of a point.

Instead of working with a large tree (with 
high variance), Boosting relies on shallow 
trees, with low variance, but high bias.



  

Boosting trees: working on the bias

Gradient descent: finding the 
minimum of a function by iteratively 
updating the coordinates of a point.

Instead of working with a large tree (with 
high variance), Boosting relies on shallow 
trees, with low variance, but high bias.

Here, we are minimizing the Loss function, 
not the data.
Each new tree learns from the mistakes of 
the previous one.



  



  

Overview of XGBoost

“Among the 29 challenge 
winning solutions published 
at Kaggle’s blog during 2015, 
17 solutions used XGBoost.”



  

Overview of XGBoost

“Among the 29 challenge 
winning solutions published 
at Kaggle’s blog during 2015, 
17 solutions used XGBoost.”

Several algorithmic optimizations:
- novel tree learning algorithm, able to handle sparse data
- parallel construction of the trees
- out-of-core computation with cache-aware block structure.
- shrinkage (equivalent to a learning rate) that includes a 
measure of the complexity of the model



  



  

Take-home message


