

Learning from trees:
growing boosted trees

with XGBoost
Lambert Moyon

Machine learning Journal Club 10/25/2017

Reminder: supervised learning

In supervised learning, you want to learn the
relationship between a set of input objects,
described by their features, and their label.

Either a class (classification),
or a value (regression)

Reminder: supervised learning

In supervised learning, you want to learn the
relationship between a set of input objects,
described by their features, and their label.

Either a class (classification),
or a value (regression)

Many applications, from SPAM classifier, to
fraud detection in bank transactions, or sales
predictions for a company.

Supervised learning: a decision tree
A decision tree

mutation

Supervised learning: a decision tree

if node is not “pure”:
Select feature and threshold
that separate in the best way
the samples

Add node to the tree with the
selected threshold.

Separate samples in the child
nodes

else:
Set as leaf

A decision tree

mutation

Supervised learning: a decision tree
A decision tree

mutation

if node is not “pure”:
Select feature and threshold
that separate in the best way
the samples

Add node to the tree with the
selected threshold.

Separate samples in the child
nodes

else:
Set as leaf

How to grow a decision tree

The impurity reduction will be our goal when growing
the tree: we want to find the tree with the lowest
impurity over its nodes.

How to grow a decision tree

The impurity reduction will be our goal when growing
the tree: we want to find the tree with the lowest
impurity over its nodes.

Two measures are usually used for classification:
● Entropy:

L(Node)=-|Node| (pc1log(pc1) + pc2log(pc2))

⇒Information Gain from a split
IG(A,B/Node) = L(Node) – L(A) – L(B)

● Gini Index:
L(Node)= |Node| (1 – pΣ 2)

How to grow a decision tree

Stopping conditions
● Minimum number of samples per child node
● Maximum depth
● Maximum number of nodes
● Minimum reduction in impurity

“A single tree does not make a forest”

A single decision tree will correctly learn to predict from the
dataset its given…
… But will most likely fail when given a new dataset

0

Random forest
classifier
The class of a variant
is given by the average
vote from all trees

. . .

. . .

. . .

1 1

A single decision tree will correctly learn to predict from the
dataset its given…
… But will most likely fail when given a new dataset

 ⇒ The solution is to grow multiple trees!
To avoid correlation between trees: boostrap and feature selection

“A single tree does not make a forest”

The bias-variance trade-of

The bias is error from erroneous assumptions in the learning
algorithm. High bias can cause an algorithm to miss the relevant
relations between features and target outputs (underfitting).

The variance is error from sensitivity to small fluctuations in the
training set. High variance can cause overfitting: modeling the
random noise in the training data, rather than the intended outputs.

Bias-variance and random forests

Boosting trees: working on the bias

Instead of working with a large tree (with
high variance), Boosting relies on shallow
trees, with low variance, but high bias.

Boosting trees: working on the bias

Gradient descent: finding the
minimum of a function by iteratively
updating the coordinates of a point.

Instead of working with a large tree (with
high variance), Boosting relies on shallow
trees, with low variance, but high bias.

Boosting trees: working on the bias

Gradient descent: finding the
minimum of a function by iteratively
updating the coordinates of a point.

Instead of working with a large tree (with
high variance), Boosting relies on shallow
trees, with low variance, but high bias.

Here, we are minimizing the Loss function,
not the data.
Each new tree learns from the mistakes of
the previous one.

Overview of XGBoost

“Among the 29 challenge
winning solutions published
at Kaggle’s blog during 2015,
17 solutions used XGBoost.”

Overview of XGBoost

“Among the 29 challenge
winning solutions published
at Kaggle’s blog during 2015,
17 solutions used XGBoost.”

Several algorithmic optimizations:
- novel tree learning algorithm, able to handle sparse data
- parallel construction of the trees
- out-of-core computation with cache-aware block structure.
- shrinkage (equivalent to a learning rate) that includes a
measure of the complexity of the model

Take-home message

