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Markov Models, tools to predict

In biology, the markov models are used to segregrate the genome into small fragments sharing 

common biological features.

As a consequence, Markov models are commonly used to perform genomic annotations from

whole genome NGS sequencing (ChIP-seq, Bis-Seq...)

Encode Project, 2012. Nature. «An integrated encyclopedia of DNA elements in the human genome»

Promoter Transcription Starting Site Gene



Two main types of Markov Models

Definition : It models the state of a system with a random variable (represented by a 

probability to observe a pattern) that changes through time. Distribution for this variable 

depends only on the distribution of the previous state.

Maths > Bio You split your DNA sequence into different states ( promoter, TSS,...), the 

transition to a new state depends on the current state, and inside a 

specific state you have a probability to observe your pattern (ex: histon

methylation) a little bit different compared to the observation probability in 

the previous state.
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- Markov chain -



How to rightly describe a model using MM ?

Promoter 0.85 0.15

TSS 0.75 0.25

Gene 0.10 0.90

Probability to observe 

H3K4me3

Probability to observe 

H3K36me3
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Promoter TSS Gene
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Promoter Transcription Starting Site Gene



Two main types of Markov Models

Definition : Hidden Markov Model (HMM) is a Markov chain for which the state is only 

partially observable. In consequence, observations are related to the state of the system, 

but they are typically insufficient to precisely determine the state.

Maths > Bio The model is splitted into different states (number defined by user) 

according to the distribution of the random variable (observations).

All transitions from one state to an other are possible and associated to 

a transition probability.
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- Hidden Markov Models -



State 1 State 2

State 3

18/20

01/20
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State 1 0.85 0.15

State 2 0.75 0.25

State 3 0.10 0.90

Probability to observe 

H3K4me3

Probability to observe 

H3K36me3

State 1 State 2 State 3

State 1 18/20 01/20 01/20

State 2 01/20 17/20 02/20

State 3 03/20 02/20 15/20

From
To

How to rightly describe a model using HMM ?
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State 1 State 2 State 3

k36m3k4m3 k36m3k4m3

State 2



Hidden Markov Models

General description

A « basic » hidden markov model can be described as follows:

= number of states

= matrix of probabilites of transition

= probability of transition from state i to state j

= the different states

= alphabet of observations

= vector of initial probability

= minimal description of a HMM model

= matrix of probabilities of observation

= probability of observation of k, in the state j

= Length of an observed sequence

= an observed sequence

= sub-sequence

= the series of states that have emitted the sequence

= probability to observed a sequence O given the HMM Λ

= a series of m sequences of observations

= probability the HMM Λ emitted the serie of sequences Θ

S1 B1(O1)=0.85 B1(O2)=0.15

S2 B2(O1)=0.75 B2(O2)=0.25

S3 B3(O1)=0.10 B3(O2)=0.90

Obs1 Obs2

S1 S2 S3

S1 a11=18/20 a12=01/20 a13=01/20

S2 a21=01/20 a22=17/20 a23=02/20

S3 a31=03/20 a32=02/20 a33=15/20

From
To



Generate a sequence with a HMM

q1 = si qt = si qt+1 = sj

O1 = Vh Ot = Vk Ot+1 = Vr

bi(Vh) bi(Vk) bj(Vr)

aij

πi

Begin

Begin
t  1

Choose an initial state q1 = si with a probability πi

While t ≤ T

End while

End

Choose observation ot = vk with a probability bi(k)
Switch to next state qt+1 = sj with a probability aij
t  t + 1



Hidden Markov Models

- Three main applications of Hidden Markov Models -

Evaluation of the probability of observation of a sequence.

Given an observed sequence O and an HMM Λ (A, B, π), you apply a maximum likelyhood

strategy to estimate the probability of observation.

Searching for the most likely sequence of hidden states.

Given an observation sequence O and an HMM Λ (A, B, π), you apply a maximum 

likelyhood strategy to estimate the probability of observation.

Training of the model.
Considering a series of sequences Θ, you adjust the parameters of the model Λ (A, B, π), 

to maximize :



Hidden Markov Models

- Evaluation of the probability of observation of a sequence -

 A sequence of observation O can be built using Q different pathways of a model Λ, whose

the likelyhoods greatly varies. Thus the probability to observe the sequence O is the sum of 

probabilities of all the Q differents pathways.

where

transition sequence of the pathway q

observation sequence of the pathway q

Considering the Q pathways of length T, the complexity is o(QT)

Maths > Bio



Hidden Markov Models

- Evaluation of the probability of observation of a sequence -

 The « Forward – backward algorithm »reduces the complexicity to o(n²T)

.

Begin

t  1

While j ≤ n

End while

End

j  j + 1

Probability to observe the beginning (1 : t) Probability to observe the end (t+1 : T)

For i = 1 : n; Do

While t ≤ T

End while

j  1

t  t + 1

Forward Begin

t  T - 1

While i ≤ n

End while

End

i  i + 1

For i = 1 : n; Do

While t ≥ 1

End while

i  1

t  t - 1

Backward



Hidden Markov Models

- Evaluation of the probability of observation of a sequence -

Begin

t  1

While j ≤ n

End while

End

j  j + 1

For i = 1 : n; Do

While t ≤ T

End while

j  1

t  t + 1

Forward Begin

t  T - 1

While i ≤ n

End while

End

i  i + 1

For i = 1 : n; Do

While t ≥ 1

End while

i  1

t  t - 1

Backward

q1 = si qt = si qt+1 = sj

O1 = Vh Ot = Vk Ot+1 = Vr

bi(h) bi(k) bj(r)

aij

πi

Begin qT = sn

OT = Vh

bn(h)



Hidden Markov Models

- Evaluation of the probability of observation of a sequence -

q1 = si qt = si qt+1 = sj

O1 = Vh Ot = Vk Ot+1 = Vr

bi(h) bi(k) bj(r)

aij

πi

Begin qT = sn

OT = Vh

bn(h)

Begin

t  1

While j ≤ n

End while

End

j  j + 1

For i = 1 : n; Do

While t ≤ T

End while

j  1

t  t + 1

Forward

Complexicity : linear

Complexicity : quadratic

Complexicity : linear

 Reduction of the complexicity is based on the assumption that we only need the information 

of the previous state to predict the next one.



Hidden Markov Models

- Searching for the most likely sequence of hidden states -

 A sequence of observation O can be built using Q different pathways of a model Λ, whose

the likelyhoods greatly vary. Viterbi algorithm gives the state sequence q which maximize the 

probability of observation P(Q,O | Λ ).

Let’s define as :

Maths > Bio Best pathway to reach the qt element

By recurrence, we can set :



Hidden Markov Models

- Evaluation of the probability of observation of a sequence -

Begin

t 2

While j ≤ n

End while

End

j  j + 1

For i = 1 : n

While t ≤ T - 1

End while

j  1

t t + 1

Viterbi

End for

t T

While t ≥ T - 1

End while

Complexicity : linear

Complexicity : quadratic

Complexicity : linear

= recording of the current state



Hidden Markov Models

- Training of the model -

 In absence of information, initialization of the model Λ0 (A0, B0, π0) starts with:

• Equiprobability to switch from a state to an other :

• Probabilities of observation set according to the frequence of observations 

of the pattern in the dataset.

S1 S2 S3

S1 a11=1/3 a12=1/3 a13=1/3

S2 a21=1/3 a22=1/3 a23=1/3

S3 a31=1/3 a32=1/3 a33=1/3

From
To

S1 B1(O1)=obs1 / (obs1+obs2) B1(O2)=obs2 / (obs1+obs2)

S2 B2(O1)=obs1 / (obs1+obs2) B2(O2)=obs2 / (obs1+obs2)

S3 B3(O1)=obs1 / (obs1+obs2) B3(O2)=obs2 / (obs1+obs2)

Obs1 Obs2

S1 S2 S3

π π1=1/3 π2=1/3 π3=1/3

From
To

π0

B0

A0



Hidden Markov Models

Training of the model.
Considering a series of sequences Θ, you adjust the parameters of the model Λ (A, B, π), 

to maximize :

Ok = Ok
1, O

k
2 .... O

k
t .... O

k
T

O1 = O1
1, O

1
2 .... O

1
t .... O

1
T

Om = Om
1, O

m
2 .... O

m
t .... O

m
T

Viterbi algorithm on Λ0 (A0, B0, π0)

P(O1) = πibi(O
1
1), aijbj(O

1
2)... ajibi(O

1
t) .... aiibi(O

1
T)

P(Ok) = πjbj(O
k
1), ajjbj(O

k
2)... ajibi(O

k
t) .... aiibi(O

k
T)

P(Om) = πnbn(O
m

1), anibi(O
m

2)... aiibi(O
m

t) .... aijbj(O
m

T)

number of times the model is in the state i to emit O1
π 1i = 

number of times the model emits O1

- Training of the model -

π 0i 

Update



Hidden Markov Models

Ok = Ok
1, O

k
2 .... O

k
t .... O

k
T

O1 = O1
1, O

1
2 .... O

1
t .... O

1
T

Om = Om
1, O

m
2 .... O

m
t .... O

m
T

Λ0 (A0, B0, π0) 

P(O1) = πibi(O
1
1),   aijbj(O

1
2)... ajibi(O

1
t) .... aiibi(O

1
T)

P(Ok) = πjbj(O
k
1),   ajjbj(O

k
2)... ajibi(O

k
t) .... aiibi(O

k
T)

P(Om) = πnbn(O
m

1),anibi(O
m

2)... aiibi(O
m

t) ....aijbj(O
m

T)

number of times the model is in the state j to emit Ok
B1

j(Ok) = 
number of times the modelis in the state j

- Training of the model -

Update

B0
j(Ok)  



Hidden Markov Models

Ok = Ok
1, O

k
2 .... O

k
t .... O

k
T

O1 = O1
1, O

1
2 .... O

1
t .... O

1
T

Om = Om
1, O

m
2 .... O

m
t .... O

m
T

Λ0 (A0, B0, π0) 

P(O1) = πibi(O
1
1),  aijbj(O

1
2)... ajibi(O

1
t) .... aiibi(O

1
T)

P(Ok) = πjbj(O
k
1),  ajjbj(O

k
2)... ajibi(O

k
t) .... aiibi(O

k
T)

P(Om) = πnbn(O
m

1),anibi(O
m

2)...aiibi(O
m

t) ....aijbj(O
m

T)

number of times the transition i  j is used
A1

ij = 
number of transitions performed from the state i

- Training of the model -

Update

A0
ij

Implementation of this strategy : Algorithm of Baum-Welch

( special case of the Expectation Maxizimation algorithm for the adjustement of the HMM parameters)



Hidden Markov Models
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• Considering you have a dataset composed of different ChIP-seq covering

(a part of) the genome,  by setting a number of expected states, you can :

1. Train your model and define the parameters (A, B, π) of your HMM Λ

using a first replicate.

S1 S2 S3

S1 a11 a12 a13

S2 a21 a22 a23

S3 a31 a32 a33

From
To

S1 S2 S3

π π1 π2 π3

From
To

π
A

S1 B1(O1) B1(O2)

S2 B2(O1) B2(O2)

S3 B3(O1) B3(O2)

Obs1 Obs2B

- ChromHMM : user (rather) friendly package to apply HMM strategy -



Hidden Markov Models
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2. Based on a second replicate, search for the sequence of hidden states.

State transition matrix probability obs matrix

•
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Hidden Markov Models
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3. Associate your probability observation matrix to genomic annotations to 

estimate the « biological effect » behind the hidden states .



Bioinfo seminar on Thurday, June 22th

« Toward a functionnal map of the human germline genome »

Do you want more ?

Thank you to your attention


