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Abstract. Random forests are a combination of tree predictors such that each tree depends on the values of a
random vector sampled independently and with the same distribution for all trees in the forest. The generalization
error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization
error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the corre-
lation between them. Using a random selection of features to split each node yields error rates that compare
favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth Interna-
tional conference, * % %, 148—156), but are more robust with respect to noise. Internal estimates monitor error,
strength, and correlation and these are used to show the response to increasing the number of features used in
the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to
regression.
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What's a decision tree?
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e How to choose a

feature at a node?

 \What makes a

node a leaf?

e How to define the

maximum depth of
the tree?



Gini impurity criterion

Gini impurity is a measure of how often a randomly chosen
element from the set would be incorrectly labeled if it was
randomly labeled according to the distribution of labels in

the subset.
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Decision trees characteristics

* Easy to understand / interpret
* Require little data preparation

* Performs well with large amount of data



Decision trees characteristics

* Easy to understand / interpret
* Require little data preparation

* Performs well with large amount of data

* Prone to overfitting
* Not robust to changes in the training dataset



Growing a random forest

* |dea: combine multiple decision trees

 Randomness is introduced by bagging and feature

selection.
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Reminder on Boosting
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Boosting allows each
tree to consider a
subset of the initial
observations.

Sampling with
replacement is
equivalent to
assigning weights.



Random forests detailed growth
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(This is different from random subspacing)



Random forest parameters

 Number of trees
 Number of features selected per node
e Depth of the tree

» Qut-of-bag error computation:

Allows to control for generalization error while
building the forest.



Advantages of the forest over the tree

* Multiple trees = multiple
combination of samples and
features explored

* No over-fitting anymore ...

e ... as long as the correlation
between trees is not too high.

* Lowering the number of
features taken at random
lowers this correlation, but
also the strength of each tree.




Random forests and feature selection

Boxplot of feature importance distribution in the estimators
of the random forest, sorted by mean,accross 50 trees
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Summary on random forests

* Quite easy to understand

* Solves the overfitting problem of single decision trees
* Allows for feature selection

* Quick to use and train for acceptable results

* Exploring high dimension data requires more trees to
explore the subspaces, thus quickly increasing the
computational time...



Resources

* https://en.wikipedia.org/wiki/Random_forest
* https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

* Tin Kam Ho (1998). The random subspace method for constructing decision
forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20,
832-844.

* http://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.ntml
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