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Abstract 

Data mining applications place special requirements on clus- 
tering algorithms including: the ability to find clusters em- 
bedded in subspaces of high dimensional data, scalability, 
end-user comprehensibility of the results, non-presumption 
of any canonical data distribution, and insensitivity to the 
order of input records. We present CLIQUE, a clustering al- 
gorithm that satisfies each of these requirements. CLIQUE 
identifies dense clusters in subspaces of maximum dimen- 
sionality. It generates cluster descriptions in the form of 
DNF expressions that are minimized for ease of comprehen- 
sion. It produces identical results irrespective of the order in 
which input records are presented and does not presume any 
specific mathematical form for data distribution. Through 
experiments, we show that CLIQUE efficiently finds accu- 
rate clusters in large high dimensional datasets. 

1 Introduction 

Clustering is a descriptive task that seeks to identify homo- 
geneous groups of objects based on the values of their at- 
tributes (dimensions) [24] [25]. Clustering techniques have 
been studied extensively in statistics [3], pattern recogni- 
tion [ll] [19], and machine learning [9] [31]. Recent work in 
the database community includes CLARANS [33], Focused 
CLARANS [14], BIRCH [45], and DBSCAN [13]. 

Current clustering techniques can be broadly classified 
into two categories [24] [25]: partitional and hierarchical. 
Given a set of objects and a clustering criterion [39], parti- 
tional clustering obtains a partition of the objects into clus- 
ters such that the objects in a cluster are more similar to 
each other than to objects in different clusters. The popular 
K-means and K-medoid methods determine K cluster rep- 
resentatives and assign each object to the cluster with its 
representative closest to the object such that the sum of the 
distances squared between the objects and their represen- 
tatives is minimized. CLARANS [33], Focused CLARANS 
[14], and BIRCH [45] can be viewed as extensions of this 

approach to work against large databases. Mode-seeking 
clustering methods identify clusters by searching for regions 
in the data space in which the object density is large. DB- 
SCAN [13] finds dense regions that are separated by low 
density regions and clusters together the objects in the same 
dense region. 

A hierarchical clustering is a nested sequence of parti- 
tions. An agglomerative, hierarchical clustering starts by 
placing each object in its own cluster and then merges these 
atomic clusters into larger and larger clusters until all ob- 
jects are in a single cluster. Divisive, hierarchical clustering 
reverses the process by starting with all objects in cluster 
and subdividing into smaller pieces [24]. 

1.1 Desiderata from the data mining perspective 

Emerging data mining applications place the following spe- 
cial requirements on clustering techniques, motivating the 
need for developing new algorithms: 

Effective treatment of high dimensionality: An object (data 
record) typically has dozens of attributes and the domain 
for each attribute can be large. It is not meaningful to look 
for clusters in such a high dimensional space as the aver- 
age density of points anywhere in the data space is likely 
to be quite low [S]. Compounding this problem, many di- 
mensions or combinations of dimensions can have noise or 
values that are uniformly distributed. Therefore, distance 
functions that use all the dimensions of the data may be 
ineffective. Moreover, several clusters may exist in different 
subspaces comprised of different combinations of attributes. 

Interpretability of results: Data mining applications typi- 
cally require cluster descriptions that can be easily assimi- 
lated by an end-user as insight and explanations are of criti- 
cal importance [15]. It is particularly important to have sim- 
ple representations because most visualization techniques do 
not work well in high dimensional spaces. 

‘Current Address: Department of Computer Science, University 
of Wisconsin, Madison, WI 63706. 

Penniesion to make digital or hard copies of all or part of this work for 
personal or classroom use ie granted without fee provided that 
copies are not made or distributed for profit or commercial sdvan- 
tage and that copier bear this notica and the full citation on the first page. 
To copy otherwise. to republish, to post on servers or to 
redistribute to lists, requires prior *pacific penniesion and/or a fee. 
SIGMOD ‘98 Seattle, WA, USA 
0 1998 ACM 0-89791.995~6/98/008...$6.00 

Scalability and usability: The clustering technique should 
be fast and scale with the number of dimensions and the size 
of input. It should be insensitive to the order in which the 
data records are presented. Finally, it should not presume 
some canonical form for data distribution. 

Current clustering techniques do not address all these 
points adequately, although considerable work has been done 
in addressing each point separately. 
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The problem of high dimensionality is often tackled by 
requiring the user to specify the subspace (a subset of the 
dimensions) for cluster analysis (e.g. [23]) However, user- 
identification of subspaces is quite error-prone. Another way 
to address high dimensionality is to apply a dimensionality 
reduction method to the dataset. Methods such as princi- 
pal component analysis or Karhunen-Loeve transformation 
[ll] [19] optimally transform the original data space into a 
lower dimensional space by forming dimensions that are lin- 
ear combinations of given attributes. The new space has 
the property that distances between points remain approx- 
imately the same as before. While these techniques may 
succeed in reducing the dimensionality, they have two short- 
comings. First, the new dimensions can be difficult to in- 
terpret, making it hard to understand clusters in relation to 
the original data space. Second, these techniques are not 
effective in identifying clusters that may exist in different 
subspaces of the original data space. We further discuss 
these point in the Appendix and Section 4. 

Clustering algorithms developed in the database commu- 
nity like BIRCH, CLARANS, and DBSCAN are designed to 
be scalable, an emphasis not present in the earlier work in 
the statistics and machine learning literature [33] [45]. How- 
ever, these techniques were developed to discover clusters in 
the full dimensional space. It is not surprising therefore 
that they are not effective in identifying clusters that exist 
in the subspaces of the original data space. In Section 4, we 
provide experimental results with BIRCH and DBSCAN in 
support of this observation. 

1.2 Contributions and layout of the paper 

We present an algorithm, henceforth referred to as CLIQUE’, 
that satisfies the above desiderata. CLIQUE automatically 
finds subspaces with high-density clusters. It produces iden- 
tical results irrespective of the order in which the input 
records are presented and it does not presume any canonical 
distribution for input data. It generates cluster descriptions 
in the form of DNF expressions and strives to generate min- 
imal descriptions for ease of comprehension. Empirical eval- 
uation shows that CLIQUE scales linearly with the number 
of input records, and has good scalability as the number of 
dimensions (attributes) in the data or the highest dimension 
in which clusters are embedded is increased. 

We begin by formally defining the problem of automatic 
subspace clustering in Section 2. Section 3 is the heart of the 
paper where we present CLIQUE. In Section 4, we present 
a performance evaluation and conclude with a summary in 
Section 5. 

2 Subspace Clustering 

Before giving a formal description of the problem of sub- 
space clustering, we first give an intuitive explanation of 
our clustering model. 

We are interested in automatically identifying (in general 
several) subspaces of a high dimensional data space that al- 
low better clustering of the data points than the original 
space. Restricting our search to only subspaces of the orig- 
inal space, instead of using new dimensions (for example 
linear combinations of the original dimensions) is important 
because this restriction allows much simpler, comprehensible 
presentation of the results. Each of the original dimensions 

‘For CLustering In QUEst, the data mining research project at 
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typically has a real meaning to the user, while even a sim- 
ple linear combination of many dimensions may be hard to 
interpret [15]. 

We use a density based approach to clustering: a cluster 
is a region that has a higher density of points than its sur- 
rounding region. The problem is to automatically identify 
projections of the input data into a subset of the attributes 
with the property that these projections include regions of 
high density. 

To approximate the density of the data points, we par- 
tition the data space and find the number of points that lie 
inside each cell (unit) of the partitioning. This is accom- 
plished by partitioning each dimension into the same num- 
ber of equal length intervals. This means that each unit has 
the same volume, and therefore the number of points inside 
it can be used to approximate the density of the unit. 

Once the appropriate subspaces are found, the task is 
to find clusters in the corresponding projections. The data 
points are separated according to the valleys of the density 
function. The clusters are unions of connected high density 
units within a subspace. To simplify their descriptions, we 
constrain the clusters to be axis-parallel hyper-rectangles. 

Each unit in a k-dimensional subspace can be described 
as a conjunction of inequalities because it is the intersection 
of 2k axis-parallel halfspaces defined by the k l-dimensional 
intervals. Since each cluster is a union of such cells, it can 
be described with a DNF expression. A compact description 
is obtained by covering a cluster with a minimal number of 
maximal, possibly overlapping rectangles and describing the 
cluster as a union of these rectangles. 

Subspace clustering is tolerant of missing values in input 
data. A data point is considered to belong to a particular 
subspace if the attribute values in this subspace are not miss- 
ing, irrespective of the values of the rest of the attributes. 
This allows records with missing values to be used for clus- 
tering with more accurate results than replacing missing val- 
ues with values taken from a distribution. 

2.1 Problem Statement 

Let A = {Ai,Az,..., Ad) be a set of bounded, totally or- 
dered domains and S = A1 x AZ x . . . x Ad a d-dimensional 
numerical space. We will refer to AI,. . . , Ad as the dimen- 
sions (attributes) of S. 

The input consists of a set of d-dimensional points V = 

{ vi, ~2,. . , v,,,} where w, = (zl;i, viz,. . . ,~;d). The jth com- 
ponent of ZI, is drawn from domain A,. 

We partition the data space S into non-overlapping rect- 
angular units. The units are obtained by partitioning every 
dimension into < intervals of equal length, which is an input 
parameter. 

Each unit u is the intersection of one interval from each 
attribute. It has the form {ui, . . . , z(d) where u; = [ii, h;) is 
a right-open interval in the partitioning of Ai. 

We say that a point v = (WI, . . . , Vd) is contained in a unit 
u = (~1, . , ud} if I!; 5 Vi < h, for all ui. The selectivity 
of a unit is defined to be the fraction of total data points 
contained in the unit. We call a unit u dense if selectivity(u) 
is greater than T, where the density threshold 7 is another 
input parameter. 

We similarly define units in all subspaces of the original 
d-dimensional space. Consider a projection of the data set 
V into At, x At, x . x At, , where k < d and t; < t, 
if i < j. A unit in the subspace is the intersection of an 
interval from each of the k attributes. 
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A cluster is a maximal set of connected dense units in 
k-dimensions. Two k-dimensional units ~1, u2 are connected 
if they have a common face or if there exists another k- 
dimensional unit US such that ~1 is connected to us and 
u2 is connected to us. Units ui = {it,, , r-t,} and uz = 
{rl, , , r&} have a common face if there are k - 1 dimen- 
sions, assume dimensions At,, . . . , At,, , such that rtj = ri 3 
and either h tk = I& or h& = l,,. 

A regionin k dimensions is an axis-parallel rectangular k- 
dimensional set. We are only interested in those regions that 
can be expressed as unions of units; henceforth all references 
to a region mean such unions. A region can be expressed as 
a DNF expression on intervals of the domains A,. 

We say that a region R is contained in a cluster C if 
R II C = R. A region R contained in a cluster C is said to 
be maximal if no proper superset of R is contained in C. 

A minimal deschption of a cluster is a non-redundant 
covering of the cluster with maximal regions. That is, a 
minimal description of a cluster C is a set 7X of maximal 
regions such that their union equals C but the union of any 
proper subset of R does not equal C. 

The Problem: Given a set of data points and the input 
parameters, t and 7, find clusters in all subspaces of the 
original data space and present a minimal description of 
each cluster in the form of a DNF expression. 

o 
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Figure 1: Illustration of definitions. 

20 25 30 35 40 45 50 55 60 65 70 

age 

Figure 2: Identification of clusters in subspaces (projections) 
of the original data space. 

Examples: In Figure 1, the two dimensional space (age, 
salary) has been partitioned by a 10 x 10 grid. A unit is 

the intersection of intervals; an example is the unit u = 
(30 5 age < 35)A(l 5 salary < 2). A region is a rectangular 
union of units. A and B are both regions: A = (30 5 
age < 50) A (4 < salary < 8) and B = (40 < age < 60) A 
(2 _< salary < 6). Assuming that the dense u&s have been 
shaded, AU B is a cluster. Note that A is a maximal region 
contained in this cluster, whereas A n B is not a maximal 
region. The minimal description for this cluster is the DNF 
expression: ((30 5 age < 50) A (4 5 salary < 8)) V ((40 5 
age < 60) A (2 5 salary < 6)). 

In Figure 2, assuming T = 20%, no 2dimensional unit is 
dense and there are no clusters in the original data space. 
If the points are projected on the salary dimension however, 
there are three l-dimensional dense units. Two of these are 
connected, so there are two clusters in the l-dimensional 
salary subspace: C’ = 5 5 sslary < 7 and D’ = 2 5 salary < 
3. There is no cluster in the age subspace because there is 
no dense unit in that subspace. 

Remarks: Our model can be generalized to allow different 
values oft for different dimensions. This will require r to be 
scaled to account for the difference in relative volumes when 
checking for the density of units in different subspaces. 

Our model can also be adapted to handle categorical 
data. An arbitrary order is introduced in the categorical 
domain. The partitioning scheme admits one categorical 
value in each interval and also places an empty interval be- 
tween two different values. Consequently, if this dimension 
is chosen for clustering, the clusters will have the same value 
in this dimension. 

Related Work: A similar approach to clustering high ch- 
mensional data has been proposed by Shoshani [38]. The 
technique computes an approximation of the density func- 
tion in a user-specifiedsubspace using a grid and then uses 
this function to cluster the data. On the other hand, we 
automatically discover the interesting subspaces, and also 
generate minimal descriptions for the clusters. 

A different technique to find rectangular clusters of high 
density in a projection of the data space has been proposed 
by Friedman [18]. This algorithm works in a top down fash- 
ion. Starting from the full space, it greedily chooses which 
projection should be taken and reevaluates the solution after 
each step in order to get closer to an optimal solution. 

The subspace identification problem is related to the 
problem of finding quantitative association rules that also 
identify interesting regions of various attributes [40] [32]. 
However, the techniques proposed are quite different. One 
can also imagine adapting a tree-classifier designed for data 
mining (e.g. [30] [37]) for subspace clustering. In the tree- 
growth phase, the splitting criterion will have to be changed 
so that some clustering criterion (e.g. average cluster diam- 
eter) is optimized. In the tree-pruning phase, we now min- 
imize the total description length of the clusters obtained 
and the data description using these clusters. 

3 Algorithms 

Our clustering technique, CLIQUE, consists of the following 
steps: 

1. Identification of subspaces that contain clusters. 

2. Identification of clusters. 

3. Generation of minimal description for the clusters. 
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We discuss algorithms for each of these steps in this sec- 
tion. 

3.1 Identification of subspaces that contain clusters 

The difficulty in identifying subspaces that contain clusters 
lies in fmding dense units in different subspaces. 

3.1.1 A bottom-up algorithm to find dense units 

The simplest way to identify dense units would be to create 
a histogram in all subspaces and count the points contained 
in each unit. This approach is infeasible for high dimen- 
sional data. We use a bottom-up algorithm that exploits 
the monotonicity of the clustering criterion with respect to 
dimensionality to prune the search space. This algorithm is 
similar to the Apriori algorithm for mining Association rules 
[l]. A somewhat similar bottom-up scheme was also used in 
[lo) for determining modes in high dimensional histograms. 

Lemma 1 (Monotonicity): If a collection of points S is 
a cluster in a k-dimensional space, then S is also part of a 
cluster in any (k - l)-dimensional projections of thds space. 
Proof A k-dimensional cluster C includes the points that 
fall inside a union of k-dimensional dense units. Since the 
units are dense, the selectivity of each one is at least T. All 
the projections of any unit u in C have at least as large selec- 
tivity, because they include all points inside u, and therefore 
are also dense. Since the units of the cluster are connected, 
their projections are also connected. It follows that the pro- 
jections of the points in C he in the same cluster in any 
(k - l)-dimensional projection. 0 

Algorithm: The algorithm proceeds level-by-level. It first 
determines l-dimensional dense units by making a pass over 
the data. Having determined (k-l)-dimensional dense units, 
the candidate k-dimensional units are determined using the 
candidate generation procedure given below. A pass over the 
data is made to find those candidate units that are dense. 
The algorithm terminates when no more candidates are gen- 
erated. 

The candidate generation procedure takes as an argu- 
ment D&l, the set of all (k - l)-dimensional dense units. 
It returns a superset of the set of all k-dimensional dense 
units. Assume that the relation < represents lexicographic 
ordering on attributes. First, we self-join D&l, the join con- 
dition being that units share the first k-2 dimensions. In the 
pseudo-code given below for this join operation, u.a, repre- 
sents the ith dimension of unit u and u.[E,, h,) represents its 
interval in the ith dimension. 

insert into Ck 
select ul.[ll,hl), u1 .[lz,hz), . . ., 

ul $k-1 I hk-1 )I W$k--1 rhk-1) 
from D&1 ul, D&..1 u2 
where ui.ai = uz.ai, ui.11 = uz.ll, ui.hl = uz.hi, 

ul.a2 = u2.a2, ul.I2 = u2.12, u1.h2 = u2.h2 ,..., 
U1 .ak-2 = tQ.ak-2, Ul.lk-2 = 7&d,+2, 741 .hk-2 = us.hk-2, 
Ul .ak-l < u2.ak-1 

We then discard those dense units from Ck which have a 
projection in (k-1)-dimensions that is not included in C&i. 
The correctness of this procedure follows from the property 
that for any k-dimensional dense unit, its projections in any 
of k- 1 dimensions must also be dense (Lemma 1). 

Scalability: The only phase of CLIQUE in which database 
records are accessed is the dense unit generation. During 
the generation of Ck, we need storage for dense units DJ+~ 
and the candidate units Ck. While making a pass over the 
data, we need storage for Ck and at least one page to buffer 
the database records. Thus, the algorithm can work with 
databases of any size. However, memory needs to be man- 
aged carefully as the candidates may swamp the available 
buffer. This situation is handled by employing a scheme 
used in [l]. As many candidates of Ck are generated as will 
fit in the buffer and database is scanned to determine the 
selectivity of these candidates. Dense units resulting from 
these candidates are written to disk, while non-dense candi- 
dates are deleted. This procedure is repeated until all of Ck 
has been examined. 

Time complexity: If a dense unit exists in k dimensions, 
then all of its projections in a subset of the k dimensions 
that is, O(2k) different combinations, are also dense. The 
running time of our algorithm is therefore exponential in the 
highest dimensionality of any dense unit. As in [l] [20], it 
can be shown that the candidate generation procedure pro- 
duces the minimal number of candidates that can guarantee 
that all dense units will be found. 

Let k be the highest dimensionality of any dense unit and 
m the number of the input points. The algorithm makes k 
passes over the database. It follows that the running time 
of our algorithm is O(ck + m k) for a constant c. 

The number of database passes can be reduced by adapt- 
ing ideas from [41] [8]. 

3.1.2 Making the bottom-up algorithm faster 

While the procedure just described dramatically reduces the 
number of units that are tested for being dense, we still 
may have a computationally infeasible task at hand for high 
dimensional data. As the dimensionality of the subspaces 
considered increases, there is an explosion in the number of 
dense units, and so we need to prune the pool of candidates. 
The pruned set of dense units is then used to form the can- 
didate units in the next level of the dense unit generation 
algorithm. The objective is to use only the dense units that 
lie in “interesting” subspaces. 

MIX-based pruning: To decide which subspaces (and the 
corresponding dense units) are interesting, we apply the 
MDL (Minimal Description Length) principle. The basic 
idea underlying the MDL principle is to encode the input 
data under a given model and select the encoding that min- 
imizes the code length [35]. 

Assume we have the subspaces Si, 5’2,. . . , S,. Our prun- 
ing technique first groups together the dense units that he 
in the same subspace. Then, for each subspace, it computes 
the fraction of the database that is covered by the dense 
units in it: xs, = Cu,eS count(ui) where count(u;) is the 
number of points that fah inside u,. The number xsj will 
be referred to as the coverage of subspace S,. 

Subspaces with large coverage are selected and the rest 
are pruned. The rationale is that if a cluster exists in k 
dimensions, then for every subspace of these k dimensions 
there exist dense units in this subspace (the projections of 
the dense units that cover the cluster in the original k di- 
mensions) that cover at least the points in the cluster. 

We sort the subspaces in the descending order of their 
coverage. We want to divide the sorted list of subspaces 
into two sets: the selected set I and the pruned set P. The 
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following model is used to 8rrive at the cut point (Figure 3). 
For each set, we compute the mean of the cover fractions, 
8nd for each subspace in that set we compute the differ- 
ence from the mean. The code length is the sum of the bit 
lengths of the numbers we have to store. If we decide to 
prune subspaces &+I,. . S,, the two averages are PI(;) = 
KC ~.+<,~~,)/il and lop = T(C,+t<,<,~sj)l(n -ill. -- 
Since both pr(i) and pp(k) are integers, the number of bits 
required to store them is log,(pr(i)) 8nd log,(pp(i)) respec- 
tively. For each subspace we have to store its difference from 
pr(;) or pp(i), which is another integer. The total length of 
the encoding is: 

CJqi) = logz(trr(4) + c h3,(bs, -w(d) + 
l<J<a 

l%(PP(~)) -b c l%(l~S, - /-@(~)I) 

%+l<J<n 

This code length is minimized to determine the optimal cut 
point i. 

coverage 
4 

average(selected subspaces) 

average(pruned subspaces) 
I 

- selected -* pruned 
subspaces subspaces 

subspace 

Figure 3: Partitioning of the subspaces into selected end 
prune sets. 

Time complexity: The optimal cut will be one of the n - 1 
positions along the sorted sequence, so there are only n - 1 
sets of pruned subspaces to consider. After sorting, the 
optimal cut can be computed in two passes of the sorted 
sequence: In the first pass, we compute p~(i),c(p(i) for 
1 < i < n. These averages 8x-e used in the second pass 
to compute CL(i) for 1 < i < n. 

Remark: The pruning of dense units in the subspaces with 
low coverage makes our algorithm faster, but there is a 
tradeoff because we may now miss some clusters. If a cluster 
exists in k dimensions, then 8ll of its projections in a subset 
of the k dimensions 8re also clusters. In our bottom-up ap- 
preach, 8Il of them have to considered if we want to find the 
duster in k dimensions, but some of them may be in one of 
the pruned subspaces. 

3.2 Finding clusters 

The input to the next step of CLIQUE is a set of dense units 
D, 8Il in the same k-dimensional space S. The output will 
be a partition of D into D’, . . . , D,‘, such that all units in D’ 
8re connected 8nd no two units u’ E D’, u’ E D3 with i # j 
8re connected. Each such partition is a cluster according to 
our definition. 

The problem is equivalent to finding connected compo- 
nents in a graph defined as fohows: Graph vertices corre- 
spond to dense units, and there is 8n edge between two 
vertices if and omy if the corresponding dense units have a 
common face. 

Units corresponding to vertices in the same connected 
component of the graph are connected because there is a 
path of units that have a common face between them, there- 
fore they 8re in the same cluster. On the other hand, units 
corresponding to vertices in different components cannot be 
connected, and therefore cannot be in the same cluster. 

We use a depth-first search algorithm [2] to find the con- 
nected components of the graph. We start with some unit 
u in D, assign it the Srst cluster number, and find 8II the 
units it is connected to. Then, if there still are units in D 
that have not yet been visited, we find one and repeat the 
procedure. The algorithm is given below: 

input: starting unit u = {[Ii, hi), . . . , [Ik,hk)} 
clusternumber n 

dfs(u, n) 
u.num = n 
for ( j = 1; j < k; j++) do begin 

// examine the left neighbor of u in dimension o, 
u’={[~l,a)l...I((z~)I(~~)),...,[~k,~k)} 
if (u’ is dense) and (u’.nutn is undefined) 

dfs(u’, n) 
// examine the right neighbor of u in dimension oj 

ur = {[Zl,hl),... I [(I;), (h;)), . . I [lk, hk)) 
if (u’ is dense) and (u’.num is undefined) 

dfs(G, n) 
end 

Time complexity: The number of dense units for a given 
subspace cannot be very lerge, because each dense unit must 
have selectivity at least T. We assume therefore that the 
dense units in this and subsequent steps of CLIQUE c8n be 
stored in memory. 

We give asymptotic running times in terms of dense unit 
accesses; the dense units 8re stored in a main memory data 
structure (hash tree [l]) that allows efficient querying. 

For each dense unit visited, the algorithm checks its 2k 
neighbors to find connected units. If the total number of 
dense units in the subspace is n, the total number of data 
structure accesses is 2kn. 

3.3 Generating minimal cluster descriptions 

The input to this step consists of disjoint sets of connected 
k-dimensional units in the same subspace. Each such set is a 
cluster and the goal is to generate a concise description for it. 
To generate a minimel description of each chrster, we would 
want to cover 8ll the units comprising the cluster with the 
minimum number of regions such that 8lI regions contain 
only connected &its. For a cluster C in a k-dimensional 
subspace s, 8 set ‘k! of regions in the same subspace s is 8 
cover of C if every region R E R is contained in C, and each 
unit in C is contained in at least one of the regions in R. 

Computing the optimal cover is known to be NP-hard, 
even in the 2dimensional case [29] [34]. The optimal cover 
is the cover with the minimal number of rectangles. The 
best approximate algorithm known for the speci8I case of 
finding 8 cover of 8 2dimensional rectihneer polygon with 
no holes produces a cover of size bounded by a factor of 2 
times the optimd [17]. Since this algorithm only works for 
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the 2-dimensional case, it cannot be used in our setting. For 
the general set cover problem, the best known algorithm for 
approximating the smallest set cover gives an approxima- 
tion factor of ln ra where n is the size of the universe being 
covered [16] [28]. 

This problem is similar to the problem of constructive 
solid geometry formulae in solid-modeling [44]. It is also 
related to the problem of covering marked boxes in a grid 
with rectangles in logic minimization (e.g. [22]). Some clus- 
tering algorithms in image analysis (e.g. [7] [36] [42]) also 
find rectangular dense regions. In these domains, datasets 
8re in low dimensional spaces and the techniques used are 
computatiormhy too expensive for large datasets of high di- 
mensionality. 

Our solution to the problem consists of two steps. We 
first greedily cover the cluster by a number of maximal rect- 
angles (regions), and then discard the redundant rectangles 
to generate 8 minimaI cover. We only have to consider max- 
imal regions for the cover of a cluster; for any cover R with 
c regions, we can find another cover R’ with c maximal re- 
gions, simply by extending each of the non-maximal regions 
in C. 

3.3.1 Covering with maximal regions 

The input to this step is a set C of connected dense units in 
the same k-dimensional space S. The output will be a set R 
of maximal regions such that %? is a cover of C. We present 
a greedy growth dgorithm for this task. 

Greedy growth: We begin with an arbitrary dense unit 
ui E C and greedily grow (as described below) a maximal 
region RI that covers ~1. We add RI to ‘R. Then we find 
another unit ur E C that is not yet covered by any of the 
maximal regions in a. We greedily grow 8 maximal region 
Rz that covers ~2. We repeat this procedure until all units 
in C are covered by some maximal region in R. 

To obtain a maximal region covering a dense unit U, we 
strrrt with u and grow it along dimension al, both to the left 
snd to the right of the unit. We grow u as much as possible 
in both directions, using connected dense units contained in 
C. The result is a rectangular region. We now grow this 
region along dimension a~, both to the left and to the right 
of the region. We again use only connected dense units from 
C, obtaining a possibly bigger rectangular region. This pro- 
cedure is repeated for all the dimensions, yielding a maximal 
region covering U. The order in which dimensions are con- 
sidered for growing a dense unit is randomly determined. 

Figure 4 illustrates how the algorithm works. Here the 
dense units appear shaded. Starting from the dense unit U, 
first we grow along the horizontal dimension, finding rect- 
angle A consisting of four dense units. Then A is extended 
in the vertical dimension. When it cannot be extended fur- 
ther, a maximal rectangle is obtained, in this caSe B. The 
next step is to find another maximal region starting from a 
dense unit not covered by B, for example w. 

Time complexity: First we show that for each maximal 
region R, the greedy growth algorithm must perform O(jRI) 
dense unit accesses, where JR/ is the number of dense units 
contained in R. 

Let S be the subspace that R lies in, k the number of 
dimensions of S, and n the number of dense units in S. The 
greedy growth algorithm must access each unit that a region 
R covers to ascertain that R is indeed part of a cluster. In 
addition, it must access every neighbor unit of R to ascertain 
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Figure 4: Illustration of the greedy growth algorithm. 

that R is also maximal. The number of neighbor units is 
bounded by 2k(RI, where IRI is the number of dense units 
contained in R. 

Since every new maximal region covers at least one thus 
far uncovered dense unit, the greedy growth algorithm will 
find at most O(n) new regions. Every new region requires 
O((R() = O(n) dense unit accesses, so the greedy growth 
algorithm performs a total of O(n2) dense unit accesses. 

This bound is almost tight. Let S contain only one clus- 
ter (with n dense units), which is bounded by two parallel 
hyperplanes and a cylinder which is parallel to only one di- 
mension. Since the hyperplanes are not parallel to any of the 
k dimensions, the boundary of the cluster that touches the 
hyperplanes consists of O(n(kl)‘k) convex vertices, each of 
which must be covered by a maximal region. The size of each 
region is 81so O(n(kl)‘k) since each region has to reach the 
other hyperplane. In this case the greedy growth algorithm 
must perform O(n2(“llk) dense unit accesses. Figure 5 
shows the 2dimensionel analog for this case. 

SimiIarly we show that there c8n be up to C(~Z~(~-‘)‘~) 
maximal regions: we can pair every comer on one hyper- 
plane with every comer on the other, and produce a new 
maximel region for each pair. The greedy growth algorithm 
will find O(n) of these. 

Figure 5: The worst case for the greedy growth algorithm 
(2dimensional case): Assume n dense units and n”’ upper 
comers. A minimal cover must include at least one rectan- 
gle per upper comer. Since each rectangle is meximel, it 
must reach the lower staircase 88 well. This means that the 
circumference of the rectangle is 2n’12 + 2, and therefore its 
area is at least nl/‘. The sum of the sizes of the rectangles 
is then O(n2(2-1)‘2). 
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3.3.2 Minimal Cover 

The last step of CLIQUE takes as input a cover for each clus- 
ter and finds a minimal cover. Minim&y is defined in terms 
of the number of maximal regions (rectangles) required to 
cover the cluster. 

We propose the following greedy heuristic: 

Removal heuristic: Remove from the cover the smallest (in 
number of units) maximal region which is redundant (i.e., 
every unit is also contained in some other maximal region). 
Break ties arbitrarily. Repeat the procedure until no maxi- 
mal region can be removed’. 

Time complexity: The removal heuristic is easy to imple- 
ment and efficient in execution. It needs a simple scan of 
the sorted list of regions. The cost of sorting the regions is 
O(n log n) because the number of dense units n is an up- 
per bound on the number of regions. The scan requires l&l 
dense unit accesses for each region R,. The total number of 
accesses for all regions is then c 1 R; 1 = O(n2 ). 

Stochastic analysis: We now present a stochastic analysis 
suggesting that the removal heuristic will do well when each 
unit is independently dense with probability p. This model 
is quite general: if the number of data points in each unit is 
a random variable drawn independently from the same (but 
otherwise arbitrary) distribution as all other units, and we 
specify any threshold T from the domain of these random 
variables, then each unit is independently dense with some 
probability p depending on the underlying distribution and 
7. 

In our application, since a dense unit has high selectivity, 
p is likely to be small. We show now that provided p is small 
enough, we obtain a good approximation ratio. 

Theorem 1: Let p = 1/2d - e, for any fixed e > 0. If each 
unit is independently dense with probability at most p, then 
the expected size of the cower we obtain is within a constant 
factor of the optimal cower. 

Proof sketch Let c be the number of units in a cluster; our 
algorithm will use at most c maximal rectangles to cover it. 
The proof of the following Lemma is omitted here; essen- 
tially we must argue that the correlations between cluster- 
sizes work in our favor. 

Lemma 3: There as a constant a > 1 (depending only on e) 
such that the probability that a cluster has size i is at most 

--I 0 . 

To complete the proof, we bound the expected number of 
maximal rectangles used to cover a given cluster by c, ia-‘, 

‘We also considered the following Addition heuristic: View the 
cluster as empty space. Add to the cover the maximal region that 
will cover the maximum number of yet uncovered units in the cluster. 
Break ties arbitrarily. Repeat the procedure until the whole cluster 
is covered. 

For general set cover, the addition heuristic is known to give a cover 
within a factor Inn of the optimum where n is the number of units 
to be covered [271. Thus it would appear that the addition heuris- 
tic, since its quality of approximation matches the negative results 
of [16] [213], would be the obvious choice. However, its implemen- 
tation in our high dimensional geometric setting is too inefficient. 
The implementation requires the rather complex computation of the 
number of uncovered units a candidate maximal region will cover. 
The residual uncovered regions that arise 8s the cover is formed can 
be complicated, and no efficient structures are known for efficiently 
maintaining the uncovered units. 

and the total number of maximal rectangles used to 

C Cia-’ 

clusters i 

Let n be the number of clusters found. Since there exists a 
constant 6, depending only on a, such that c; ia-’ 5 0, we 
have that 

C Cia-’ <en 

clusters 1 

It follows that the expected size of the cluster covers we 6nd 
is within a constant factor of the total number of clusters, 
and thus the size of the optimal cover. 0 

4 Performance Experiments 

We now empirically evaluate CLIQUE using synthetic as 
well as real datasets. The goals of the experiments are to 
assess the efficiency and accuracy of CLIQUE: 

l Efficiency: Determine how the running time scales 
with: 

- Dimensionality of the data space. 

- Dimensionality of clusters. 

- Size of database. 

l Accuracy: Test if CLIQUE recovers known clusters 
in some subspaces of a high dimensional data space. 

The experiments were run on a 133-MHz IBM RS/SOOO 
Model 43P workstation. The data resided in the AIX fle 
system and was stored on a 2GB SCSI drive with sequential 
throughput of about 2 MB/second. 

4.1 Synthetic data generation 

We use the synthetic data generator from [43] to produce 
datasets with clusters of high density in specific subspaces. 
The data generator allows control over the structure and the 
size of datasets through parameters such as the number of 
records, the number of attributes, and the range of values 
for each attribute. The range of values was set to [O,lOO] 
for all attributes. 

The clusters are hyper-rectangles in a subset of dimen- 
sions such that the average density of data points inside the 
hyper-rectangle is much larger than the average density in 
the subspace. The faces of such a cluster are parallel to the 
axis, therefore another way to describe the cluster is as the 
intersection of a set of attribute ranges. 

The cluster descriptions are provided by the user. A 
description specifies the subspace of each hyper-rectangle 
and the range for each attribute in the subspace. The at- 
tribute values for a data point assigned to a cluster are 
generated as follows. For those attributes that define the 
subspace in which the cluster is embedded, the value is 
drawn independently at random from the uniform distri- 
bution within the range of the hyper-rectangle. For the 
remaining attributes, the value is drawn independently at 
random from the uniform distribution over the entire range 
of the attribute. After distributing the specified number of 
points equally among the specified clusters, an additional 
10% points are added as random noise. Values for all the 
attributes of these points are drawn independently at ran- 
dom from the uniform distribution over the entire range of 
the attribute. 
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4.2 Synthetic data results 

We first present scalability and accuracy results observed 
using synthetic data. The experiments were run with ( = 10. 
All times are in seconds. 

I I I I I I I 
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Figure 6: Scalability with the number of data records. 

Database size: Figure 6 shows the scalability as the size of 
the database is increased from 100,000 to 500,000 records. 
The data space had 50 dimensions and there were 5 clusters, 
each in a different 5dimensional subspace, and T was set to 
0.5%. As expected, the running time scales linearly with the 
size of the database because the number of passes through 
the database does not change. 
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Figure 7: Scalability with the dimensionelity of the data 
space. 

Dimensionality of the data space: Figure 7 shows the scal- 
ability as the dimensionality of the data space is increased 
from 10 to 100. The database had 100,000 records and there 
where 5 clusters, each in a different 5dimensional subspace, 
and r was set to 0.5%. The curve exhibits quadratic be- 
havior. We note that the problem of searching for inter- 
esting subspaces inherently does not scale well as the di- 
mensionahty of the data space increases. In this case, we 
are searching for clusters in 5 dimensions. The number of 
5-dimensional subspaces of a d-dimensional space is O(d6). 
The algorithm performs better than the worst case because 
many of these dimensions are primed during the dense unit 
generation phase. 
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Figure 8: Number of subspaces pruned. 

Figure 8 shows the percentage of subspaces pruned by 
MDL during an algorithm run. The input was a synthetic 
dataset with 50 dimensions, with 5 hidden 5dimensional 
clusters, and r was set to 0.5%. In this case, 86% of the 
%-dimensional subspaces and 38% of the J-dimensional sub- 
spaces were pruned. The result of the pruning is a much 
faster algorithm, though there is now a risk of missing some 
clusters. 
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Figure 9: Scalability with the dimensionality of the hidden 
cluster. 

Dimensionality of hidden clusters: Figure 9 shows the scal- 
ability as the highest dimensionality of the hidden clusters 
is increased from 3 to 10 in a 5Odimensiorml space. In each 
case, one cluster was embedded in the relevant subspace of 
highest dimensionality. The database had 100,000 records 
and T was set at 1% for bdimensional clusters, 0.5% for 
4-dimensional to 7dimensional clusters and and 0.1% for 8- 
dimensional to lo-dimensional clusters. We selected a lower 
r for the highest dimensional clusters because, as the volume 
of the clusters increases, the cluster density decreases. For 
lower dimensions however we can increase T, and since this 
does not increase the number of dense units the algorithm 
runs at least as fast. The increase in running time reflects 
the time complexity of our algorithm, which is O(mk + c”) 
where m is the number of records, c a constant, and k the 
maximum dimensionality of the hidden clusters. 
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Accuracy: In all the above experiments, the original clus- 
ters were recovered by the algorithm. In some cases, a 
few extra clusters were reported, typically comprising a sin- 
gle dense unit with very low selectivity. This artifact is 
a byproduct of the data generation algorithm and the fact 
that T was set low. As a result, some units had enough noise 
points to become dense. 

4.3 Comparisons with BIRCH, DBSCAN and SVD 

We ran CLIQUE, BIRCH, and DBSCAN with the same syn- 
thetic datasetss. The purpose of these experiments was to 
assess if algorithms such as BIRCH or DBSCAN designed 
for clustering in full dimensional space can also be used for 
subspace clustering. For the task of fmcling clusters in the 
full dimensional space, which was the design goal of these 
algorithms, CLIQUE has no advantage. 

We used clusters embedded in B-dimensional subspaces 
while varying the dimensionality of the space from 5 to 50. 
For reference, CLIQUE was able to recover all clusters in 
every case. 

BIRCH: We provided the correct number of clusters (5) as 
input to the postprocessing clustering algorithm built on top 
of BIRCH. The output consists of cluster centers in the full 
dimensional space. The input datasets had 100,000 points. 
The input clusters were hyper-rectangles in 5-dimensional 
subspaces, with the values of the remaining attributes uni- 
formly distributed. This is equivalent to a hyper-rectangle 
in the full data space where remaining attributes include the 
whole range. Therefore BIRCH successfully recovers a clus- 
ter if it reports a center approximately at the center of the 
equivalent hyper-rectangle in the full data space, and the 
number of points in the reported cluster is approximately 
correct. 

Table 1: BIRCH experimental results. 

The results summarized in Table 1 show that BIRCH can 
discover 5-dimensional clusters embedded in a lo-dimensional 
data space, but fails to do so when the dimensionality of the 
data space increases. This is expected because BIRCH uses 
a distance function that takes all dimensions into account. 
When the number of dimensions with uniform distribution 
increases, the distance function fails to distinguish the clus- 
ters. 

As dimensionality of the data space increases, BIRCH 
does not always return 5 clusters even though 5 is given 
as an input parameter. For different randomly generated 
datasets, it returns 3, 4 or 5 clusters. The final column 

3We could not run experiments with CLARANS because the code 
required modification to work with points in high dimensions. We 
expect CLARANS to ahow similar behavior as BIRCH in identifying 
clustera embedded in aubapaces. 

gives the number of correct embedded clusters that BIRCH 
identified. 

DBSCAN: DBSCAN discovers the number of clusters on 
its own, so we did not have to give the number of clus- 
ters as input. DBSCAN could not be run with data having 
more than 10 dimensions. The input datasets had 10,000 
points. As in the BIRCH experiments, the clusters were in 
5-dimensional subspaces. We ran DBSCAN with different 
input values of e; we report the best results in Table 2. 

DBSCAN could not discover B-dimensional clusters in 
a lo-dimensional data space; it could do so when the di- 
mensionality of the space was reduced to 7. Even in a 8- 
dimensional data space, it could recover only one of the 5- 
dimensional embedded clusters. DBSCAN uses a density 
based cluster definition, and even a small number of dimen- 
sions with uniform distribution can lower the density in the 
space enough so t.hat no clusters are found. 

Table 2: DBSCAN experimental results. 

10 15 1 5 1 1 10 

SVD: We also did Singular Value Decomposition (SVD) 
[ll] [19] on the synthetic datasets to find if the dimension- 
ality of the space can be reduced or if the subspaces that 
contain dense units can be deduced from the projections 
into the new space. 

Table 3: SVD decomposition experimental results. 

In Table 3, rk gives the ratio of the sum of the k largest 
eigenvalues to the sum of au eigenvalues. Let x1,. . . , Ad be 
the eigenvalues found, soFted in decreasing order. Then rk 
= c,“=, X,/~!=, X;. The quantity rk indicates how much 
variance is ret$ned in the new space that is defined by the k 
eigenvectors corresponding to the k largest eigenvalues. In 
our experiments the variation of the original space is such 
that the smallest eigenvalue is almost as large as the largest, 
and so we cannot achieve any dimensionality reduction. In 
addition, the new projections are linear combinations of all 
the original vectors and cannot be used to identify the sub- 
spaces that contain clusters. 

4.4 Real data results 

We ran CLIQUE against two datasets obtained from the 
insurance industry (Insurl, Insu.r2), another from a depart- 
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ment store (Store), and the last from a bank (Bank). Table 4 
summarizes the results of this experiment. Each run used a 
selectivity threshold of l%, and every dimension was divided 
into 10 intervals of equal length. We show in the table the 
dimensionality of the original data space, the highest dimen- 
sionality of the subspace in which clusters were found, and 
the number of such clusters for each of the datasets. In all 
cases, we discovered meaningful clusters embedded in lower 
dimensional subspaces. 

Table 4: Real data experimental results. 

5 Conclusions 

We introduced the problem of automatic subspace cluster- 
ing, motivated by the needs of emerging data mining ap- 
plications. The solution we propose, CLIQUE, has been de- 
signed to find clusters embedded in subspaces of high dimen- 
sional data without requiring the user to guess subspaces 
that might have interesting clusters. CLIQUE generates 
cluster descriptions in the form of DNF expressions that 
are minimized for ease of comprehension. It is insensitive 
to the order of input records and does not presume some 
canonical data distribution. In designing CLIQUE, we com- 
bined developments from several fields including data min- 
ing, stochastic complexity, pattern recognition, and compu- 
tational geometry. 

Empirical evaluation shows that CLIQUE scales linearly 
with the size of input and has good scalability as the number 
of dimensions in the data or the highest dimension in which 
clusters are embedded is increased. CLIQUE was able to 
accurately discover clusters embedded in lower dimensional 
subspaces, although there were no clusters in the original 
data space. Having demonstrated the computational feasi- 
bility of automatic subspace clustering, we believe it should 
be considered a basic data mining operation along with other 
operations such as associations and sequential-patterns dis- 
covery, time-series clustering, and classification [23]. 

Automatic subspace clustering can be useful in other ap- 
plications besides data mining. To index OLAP data, for 
instance, the data space is first partitioned into dense and 
sparse regions [12]. Data in dense regions is stored in an ar- 
ray whereas a tree structure is used to store sparse regions. 
Currently, users are required to specify dense and sparse di- 
mensions [4]. Similarly, the precomputation techniques for 
range queries over OLAP data cubes [21] require identifica- 
tion of dense regions in sparse data cubes. CLIQUE can be 
used for this purpose. 

In future work, we plan to address the problem of eval- 
uating the quality of clusterings in different subspaces. One 
approach is to choose clusters that maximize the ratio of 
cluster density over expected density for clusterings with 
the same dimensional&y. We also plan to investigate what 
system support can be provided to the user for selecting the 
model parameters, r and t. Another area for future work 
is to try an alternative approach for finding dense units. If 

the user is only interested in clusters in the subspaces of 
highest dimensionality, we can use techniques based on re- 
cently proposed algorithms for discovering maximal itemsets 
[5] [26]. These techniques will allow CLIQUE to find dense 
units of high dimensionality without having to find all of 
their projections. 
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6 Appendix: Dimensionality reduction 

The principal component analysis or Karhunen-Lo&e (KL) 
transformation is the optimal way to project n-dimensional 
points to k-dimensional points such that the error of the 
projections (the sum of the squared distances) is minimal 
[ll] 1191. This transformation gives a new set of orthogonal 
axes, each a linear combination of the original ones, sorted 
by the degree by which they preserve the distances of the 
points in the original space. 

For a given set of m points in d dimensions, finding the 
set of axes in the KL transformation is equivalent to solving 
the Singular Value Decomposition problem in an m x d ma- 
trix N, each row of which represents a data point. The SVD 
of the matrix N is the decomposition into N = U x A x Vt, 
where U is an m x r matrix, A a diagonal r x r matrix and 
V a column orthonormal d x r matrix. The matrix V rep- 
resents the axes of the KL-decomposition (they are also the 
eigenvectors of the matrix N x Nt), ordered by the respective 
values in the matrix A. Note that r 5 d, so the new space 
has potentially lower dimensionality. In addition, for each 
small entry in the matrix A, the corresponding vectors may 
be eliminated and a lower dimensionality space obtained. 

In our problem, we assume there may not be clearly de- 
6ned clusters in the original space and try to find those 
dimensions that can be used for clustering. Clearly, two 
points may be far apart in a 3dimensional space but could 
be quite close when a specific projection into 2 dimensions is 
used. The effects of such projections are what we are trying 
to capture. In addition, in the interest of comprehension, we 
do not want to use dimensions that are linear combinations 
of the original ones. 

Figure 10: Examples where KL transformation is helpful. 
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Figure 11: Examples where KL transformation is not help- 
ful. 

The following examples illustrate these points. In Fig- 
ure 10, two data distributions are shown. The original sxes 
are labeled fl, f2, f3. In both cases, the data points are 
uniformly distributed inside the shaded 8rea. In the left case 
there is one cluster, in the right two. Assuming the number 
of points to be the same in both cases, the density of the 
shaded regions is different for the two sets. The eigenvec- 
tors are labeled el, e2, e3, such that el corresponds to the 
eigenvalue with the largest magnitude and e3 to the eigen- 
value with the smallest magnitude. The first eigenvalue is 
much larger then the other two, indicating that there is large 
variation dong axis el. The eigenvectors are essentklly the 
same in both cases. Thus, it c8n be said that the KL trans- 
formation is quite successful in these instances. Although 
the transformation cannot be used by itself to find the ac- 
tual clusters because it cannot distinguish between the two 
cases, one can argue that the clusters will be discovered after 
projecting the points on el and examining the distribution 
of the projections. 

In Figure 11, the 2-dimensional data is uniformly dis- 
tributed in dimension fl, but contains three clusters dong 
dimension f2. Despite the clustering on f2, there is large 
veriation along both Bxes. The results of the KL transfor- 
mation are the eigenvectors el and e2 8s shown. Because of 
the veriation, the eigenvalue corresponding to eigenvector e2 
(the second largest eigenvalue) is quite large. We have thus 
come up with a space of the same dimensionelity. Further- 
more, no projection on the new Bxes can be used to identify 
the clusters. 

The right figure illustrates that clusters may exist in dif- 
ferent subspaces. The data points are uniformly distributed 
inside the three Sdimensional rectangles. The rectangles are 
long, skinny end not very dense. In addition they do not in- 
tersect. For reasonable selectivities, the only clusters are the 
projections of the rectangles on their small faces; that is, one 
cluster in each of the fl x f 2, f 1 x f 3 and f 2 x f 3 subspeces. 
The KL decomposition does not help here because of large 
variation along each of the original axes. The resulting Bxes 
are el, e2, e3 and the three eigenvalues are approximately 
equal. This means there is no 2-dimensional space which 
approximates the original space. A 3-dimensional space has 
to be used Biter the KL transformation for the clustering. 
But the density of the points in the 3dimensional space is 
too low to obtain good clustering. 
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