Topic models

Machine Learning Journal Club November 22nd 2017

Classifying text documents

How to classify very large numbers of text documents to make them easily searchable?

Associate 'topics' to documents based on their word content

Earlier approaches: matrix factorization

Latent Semantic Analysis (1988)

- Based on the singular-value decomposition of the matrix of word counts
- Aims at a finding vectors of co-occurring words

Probabilistic topic models

Instead of a deterministic decomposition, a probabilistic model is fitted to the data

 Fitted using a stochastic algorithm (Markov Chain Monte Carlo or Expectation-Maximization)

Latent Dirichlet Allocation

Most popular topic model (*Blei, 2003*)

- Aims at decomposing a corpus of text documents into groups of co-occurring words
- Each word occurrence in each document is assigned to a topic (the number of topics is fixed in advance)
- Topics are described by a distribution over words
- Documents are described by a distribution over topics

Latent Dirichlet Allocation

Blei et al. 2012

Latent Dirichlet Allocation

Blei et al. 2012

Extensions to Latent Dirichlet Allocation

- Hierarchical Dirichlet Processes (*Teh et al. 2006*)
- Fits the number of topics as part of the probabistic model
- Author-topic models (*Rosen-Zvi et al. 2004*)
- Time-dependent topic models
- Allows for time-varying topic composition

Extensions to Latent Dirichlet Allocation

Blei et al. 2012

Use beyond natural language processing

- Bioinformatics
- Image classification
- Music classification
- Fraud detection in telecommunications ...

Biodiversity data

Valle et al. 2014

DNA-based biodiversity survey: 'metabarcoding'

Environmental ____ DNA ___ PCR amplification ____ High-throughput sample (e.g. soil) extraction of a DNA barcode Illumina sequencing

DNA-based biodiversity surveys generate:

- abundance data (number of sequence reads)
- for a large number of OTUs
- in a large number of sampled locations.

All the information is contained in the covariance of OTUs and in the covariance of their abundances among samples

→ How to retrieve and represent this information?

Metabarcoding dataset

Sampling scheme:

- 12 ha of tropical forest
- 1 soil sample every 10 m
- 1,136 samples

Metabarcoding dataset

5 barcodes:

Bacteria (16S): 20,162 OTUs Archaea (16S): 4,101 OTUs Fungi (ITS1): 9,855 OTUs Plants (trnL): 1,360 OTUs

 Protists (18S):
 1,648 OTUs

 Arthropods (18S):
 1,881 OTUs

 Annelids (18S):
 51 OTUs

 Nematodes (18S):
 378 OTUs

 Platyhelminthes (18S):
 126 OTUs

LDA decomposition

K=3 assemblages:

Bacteria

Protists

Fungi

LDA decomposition

Bacteria (20,162 OTUs), K=3 assemblages:

0.00 0.25 0.50 0.75 Assemblage 2

0.00 0.25 0.50 0.75 1.00 Assemblage 3

LDA decomposition

Ba K=	acteria (20,162 OTUs), =3 assemblages:			موجع . مح
	LiDAR measurements	Terra firme	Hydromorphic	Exposed rock
	Topography	0.36*	-0.43*	0.00
	Slope	-0.26*	0.31*	0.01
	Wetness	-0.27*	0.40*	-0.08*

Stability

How strongly structured are the data?

→ Stability of the taxonomic composition over 100 realizations with random initial conditions

