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Classifying text documents

How to classify very large numbers of text
documents to make them easily searchable?

—3 Associate ‘topics’ to documents based
on their word content



Earlier approaches: matrix
factorization

Latent Semantic Analysis (1988) Doc.1 Doc.2 Doc.3
 Based on the singular-value ~ Werd! 3 0 1 -
decomposition of word2f 10 2 0O -
the matrix of word counts word3| O O §

 Aims at a finding vectors of
co-occurring words




Probabilistic topic models

Instead of a deterministic decomposition, a
probabilistic model is fitted to the data
—3» Fitted using a stochastic algorithm (Markov

Chain Monte Carlo or
Expectation-Maximization)



Latent Dirichlet Allocation

Most popular topic model (Blei, 2003)

 Aims at decomposing a corpus of text
documents into groups of co-occurring words

 Each word occurrence in each document is
assigned to a topic (the number of topics is
fixed in advance)

* Topics are described by a distribution over
words

* Documents are described by a distribution over
topics



Latent Dirichlet Allocation

Topic proportions and

Documen i
ocuments assignments

Topics
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brain 0.04
heuron 0.02
nerve 0.01
data 0.02
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“Genetics”
human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
sequences

“Evolution”
evolution
evolutionary
species
organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

“Disease”
disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

“Computers”

computer
models
information
data
computers
system
netwaork
systems
model
parallel
methods
networks
software
new
simulations

Blei et
al. 2012



Extensions to Latent Dirichlet
Allocation

 Hierarchical Dirichlet Processes (Teh et al. 2006)

-3 Fits the number of topics as part of the probabistic
model

e Author-topic models (Rosen-Zvi et al. 2004)

== Accounts for metadata, such as documents authors

* Time-dependent topic models

-3 Allows for time-varying topic composition



Proprtion of Science

Extensions to Latent Dirichlet
Allocation
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Blei et
al. 2012



Use beyond natural language
processing

* Bioinformatics

* Image classification

* Music classification

* Fraud detection in telecommunications ...



Biodiversity data

Valle et
al. 2014

Proportion




DNA-based biodiversity survey:
‘metabarcoding’

Environmental , DNA .. PCRamplification _,  High-throughput
sample (e.g. soil) extraction of a DNA barcode Illumina sequencing



DNA-based biodiversity surveys generate:
e abundance data (humber of sequence reads)
e for a large number of OTUs

* in a large number of sampled locations.
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All the information is contained in the
co-occurrence of OTUs and in the covariance of
their abundances among samples

-> How to retrieve and represent this information?



Metabarcoding dataset

Sampling scheme:

e 12 haof
tropical forest

1 soil sample
every 10 m

e 1,136 samples




Metabarcoding dataset

5 barcodes:

Bacteria (16S): 20,162 OTUs
Archaea (16S): 4,101 OTUs
Fungi (ITS1): 9,855 OTUs
Plants (trnL): 1,360 OTUs

Protists (18S): 1,648 OTUs
Arthropods (18S): 1,881 OTUs
Annelids (18S): 51 OTUs
Nematodes (18S): 378 OTUs

Platyhelminthes (18S): 126 OTUs



LDA decomposition

K=3 assemblages:

Bacteria Protists Fungi



LDA decomposition

Bacteria (20,162 OTUs),
K=3 assemblages:
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LDA decomposutlon

Bacteria (20,162 OTUs),
K=3 assemblages:

LiDAR measurements Hydromorphlc Exposed rock

Topography 0.36* -0.43* 0.00
Slope -0.26* 0.31* 0.01
Wetness -0.27* 0.40* -0.08*



Stability

How strongly structured are
the data?

=> Stability of the taxonomic
composition over 100
realizations with random
initial conditions
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