Robust Real-Time Face Detection

Viola&Jones, Int. J. of Comp. Vision 2004

France ROSE, Mar 2017

Overview

Goal:

- Find faces in an image and put boxes around them
- Do it "real-time"
- Achieve a very low False Detection Rate

3 major contributions:

- Integral image to compute quickly features on the image
- Features filtering by AdaBoost learning algorithm
- "Cascade" of classifiers to reject early the easy boxes with no face

Overview

Ensemble methods

Basic idea: put many models instead of only one

Bagging (bootstrap aggregating):

- generate random variations of the training set by resampling
- learn a classifier on each
- combine the results by voting

Ensemble methods

Basic idea: put many models instead of only one

Bagging

Boosting:

- Weight training examples
- Weights are varied so that each new classifier focuses on the examples the previous ones tended to get wrong (sequential)

Ensemble methods

Basic idea: put many models instead of only one

Bagging

Boosting

Stacking:

- The outputs of individual classifiers become the input of a "higher level" learner that figures out how to best combine them

Weak classifier: doing better than random

AdaBoost: adaptive boosting Original data set, D, Update weights, D₂ Update weights, D₃ **Trained classifier Trained classifier Trained classifier**

Slide from Zhang&Khalil

courtesy to Alexander Ihler http://sli.ics.uci.edu/Classes/2012F-273a?action=download&upname=10-ensembles.pdf

AdaBoost

Weight each classifier and combine them:

Combined classifier

Slide from Zhang&Khalil

AdaBoost

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights $w_{1,i} = \frac{1}{2m}$, $\frac{1}{2l}$ for $y_i = 0$, 1 respectively, where *m* and *l* are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - 1. Normalize the weights, $w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{i=1}^{n} w_{t,i}}$
 - 2. Select the best weak classifier with respect to the weighted error

$$\epsilon_t = \min_{f, p, \theta} \sum_i w_i | h(x_i, f, p, \theta) - y_i |.$$

- 3. Define $h_t(x) = h(x, f_t, p_t, \theta_t)$ where f_t, p_t , and θ_t are the minimizers of ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$.

• The final strong classifier is:

$$C(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where $\alpha_t = \log \frac{1}{\beta_t}$

AdaBoost

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights $w_{1,i} = \frac{1}{2m}$, $\frac{1}{2l}$ for $y_i = 0$, 1 respectively, where *m* and *l* are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - 1. Normalize the weights, $w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{i=1}^{n} w_{t,i}}$
 - 2. Select the best weak classifier with respect to the weighted error

$$\epsilon_t = \min_{f, p, \theta} \sum_i w_i | h(x_i, f, p, \theta) - y_i |.$$

- 3. Define $h_t(x) = h(x, f_t, p_t, \theta_t)$ where f_t, p_t , and θ_t are the minimizers of ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ to otherwise, and $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$.

• The final strong classifier is:

$$C(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where $\alpha_t = \log \frac{1}{\beta_t}$

Importance of each weak classifier related to its error

Predict & compute errors

Train

Update weights of training examples

AdaBoost as a feature selection process

- Each weak learner is restricted to **one feature**
- A selected feature(= a good weak classifier) will have a **large weight** in the strong classifier
- "For each feature, the weak learner determines the **optimal threshold classification function**, such that the minimum number of examples are misclassified."

$$h(x, f, p, \theta) = \begin{cases} 1 & \text{if } pf(x) < p\theta \\ 0 & \text{otherwise} \end{cases} \begin{array}{l} f: \text{ feature} \\ p: \text{ polarity } (+/-I) \\ \theta: \text{ threshold} \end{cases}$$

x: *subwindow*

A 200-features strong classifier from AdaBoost

The Attentional Cascade

"Smaller [...] boosted classifiers can be constructed which reject many of the negative sub-windows while detecting almost all positive instances."

The Attentional Cascade

"Smaller [...] boosted classifiers can be constructed which reject many of the negative sub-windows while detecting almost all positive instances."

The Attentional Cascade

"Smaller [...] boosted classifiers can be constructed which reject many of the negative sub-windows while detecting almost all positive instances."

Final training code

- User selects values for *f*, the maximum acceptable false positive rate per layer and *d*, the minimum acceptable detection rate per layer.
- User selects target overall false positive rate, F_{target} .
- *P* = set of positive examples
- N = set of negative examples
- $F_0 = 1.0; D_0 = 1.0$
- *i* = 0
- while $F_i > F_{target}$ $-i \leftarrow i+1$
 - $-n_i = 0; F_i = F_{i-1}$
 - while $F_i > f \times F_{i-1}$
 - $*n_i \leftarrow n_i + 1$
 - * Use P and N to train a classifier with n_i features using AdaBoost
 - * Evaluate current cascaded classifier on validation set to determine F_i and D_i .
 - * Decrease threshold for the *i*th classifier until the current cascaded classifier has a detection rate of at least $d \times D_{i-1}$ (this also affects F_i)
 - $-N \leftarrow \emptyset$
 - If $F_i > F_{target}$ then evaluate the current cascaded detector on the set of non-face images and put any false detections into the set N

Final training code

Adding a feature to the layer:

- More features achieve higher DR and lower FPR -
- More features require more time to compute

- User selects values for *f*, the maximum acceptable false positive rate per layer and *d*, the minimum acceptable detection rate per layer.
- User selects target overall false positive rate, F_{target} .
- *P* = set of positive examples
- N = set of negative examples
- $F_0 = 1.0; D_0 = 1.0$
- *i* = 0
- while $F_i > F_{target}$ $-i \leftarrow i + 1$ $-n_i = 0; F_i = F_{i-1}$
 - while $F_i > f \times F_{i-1}$
 - $*n_i \leftarrow n_i + 1$
 - * Use P and N to train a classifier with n_i features using AdaBoost
 - * Evaluate current cascaded classifier on validation set to determine F_i and D_i .
 - * Decrease threshold for the *i*th classifier until the current cascaded classifier has a detection rate of at least $d \times D_{i-1}$ (this also affects F_i)

$-N \leftarrow \emptyset$

- If $F_i > F_{target}$ then evaluate the current cascaded detector on the set of non-face images and put any false detections into the set N Initialization

- Adding a layer

Overview - detection

Results

References

- Viola and Jones. Robust Real-time Face Detection. International Journal of Computer Vision, 2004.
- Introduction to Adaboost, by Yongli Zhang Nacer Khalil (slides).
- Youtube video on AdaBoost (Alexander Ihler)
- Youtube video on Face Detection
- <u>Classifier ensembles, by Pier Luca Lanzi (slides)</u>